首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6502篇
  免费   395篇
  国内免费   545篇
  2024年   12篇
  2023年   99篇
  2022年   88篇
  2021年   228篇
  2020年   241篇
  2019年   275篇
  2018年   243篇
  2017年   207篇
  2016年   219篇
  2015年   323篇
  2014年   440篇
  2013年   609篇
  2012年   281篇
  2011年   297篇
  2010年   227篇
  2009年   306篇
  2008年   333篇
  2007年   312篇
  2006年   314篇
  2005年   283篇
  2004年   262篇
  2003年   250篇
  2002年   203篇
  2001年   157篇
  2000年   112篇
  1999年   117篇
  1998年   95篇
  1997年   103篇
  1996年   94篇
  1995年   92篇
  1994年   100篇
  1993年   77篇
  1992年   65篇
  1991年   55篇
  1990年   57篇
  1989年   39篇
  1988年   24篇
  1987年   27篇
  1986年   15篇
  1985年   37篇
  1984年   32篇
  1983年   24篇
  1982年   35篇
  1981年   9篇
  1980年   13篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有7442条查询结果,搜索用时 171 毫秒
991.
992.
《Epigenetics》2013,8(3):448-458
The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation.  相似文献   
993.
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~ 15% are unmethylated. Five percent of CGs cluster into ~ 20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30 million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   
994.
995.
996.
DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets.  相似文献   
997.
Abstract We have constructed a multicopy plasmid vector (pAMH62) expressing lamB , the gene coding for the phage λ receptor protein in Escherichia coli . In this construction, the lamB structural gene was fused to the ompR promoter of E. coli . The ompR promoter was employed because: (i) it can function in other gram negative bacteria; (ii) it expresses lamB in a multicopy state at a level comparable to that of maltose-induced chromosomal lamB in E. coli . The vector pAMH62 was tested in E. coli and Salmonella typhimurium . In both cases the LamB protein was produced in similar amounts, was properly integrated to the outer membrane and was functional as phage λ receptor. Thus pAMH62 should provide a useful tool for extending the host range of phage λ and λ-derived vectors to other Gram-negative bacteria.  相似文献   
998.
A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC.  相似文献   
999.
By incorporating annotation information into the analysis of next-generation sequencing DNA methylation data, we provide an improvement in performance over current testing procedures. Methylation analysis using genome information (MAGI) is applicable for both unreplicated and replicated data, and provides an effective analysis for studies with low sequencing depth. When compared with current tests, the annotation-informed tests provide an increase in statistical power and offer a significance-based interpretation of differential methylation.  相似文献   
1000.
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号