首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2519篇
  免费   203篇
  国内免费   424篇
  2024年   7篇
  2023年   66篇
  2022年   66篇
  2021年   82篇
  2020年   105篇
  2019年   105篇
  2018年   113篇
  2017年   91篇
  2016年   103篇
  2015年   92篇
  2014年   137篇
  2013年   195篇
  2012年   76篇
  2011年   113篇
  2010年   95篇
  2009年   103篇
  2008年   116篇
  2007年   132篇
  2006年   125篇
  2005年   94篇
  2004年   68篇
  2003年   83篇
  2002年   93篇
  2001年   81篇
  2000年   52篇
  1999年   56篇
  1998年   43篇
  1997年   46篇
  1996年   46篇
  1995年   50篇
  1994年   53篇
  1993年   57篇
  1992年   51篇
  1991年   43篇
  1990年   25篇
  1989年   30篇
  1988年   23篇
  1987年   25篇
  1986年   22篇
  1985年   38篇
  1984年   28篇
  1983年   17篇
  1982年   26篇
  1981年   17篇
  1980年   15篇
  1979年   7篇
  1978年   9篇
  1977年   7篇
  1974年   5篇
  1973年   4篇
排序方式: 共有3146条查询结果,搜索用时 15 毫秒
81.
栗树种质资源的多样性及其保存利用   总被引:2,自引:0,他引:2  
本文在总结板栗(Castanea mollissima Bl.)种质资源调查研究的基础上,论述了以板栗为主的中国栗属植物遗传变异的多样性。并且从生态地理学上分析板栗种内变异的分布,提出了板栗遗传变异沿生态地理梯度变化的规律,为板栗种质资源的利用提供了依据。文中指出,当前正面临着板栗种质流失的严重问题,尤其随着良种的推广,必将带来遗传种质贫乏的后果。为此,提出了有关保存和利用的具体建议。  相似文献   
82.
The association between enzymatic and electrochemical reactions, enzymatic electrocatalysis, had proven to be a very powerful tooth in both analytical and synthetic fields. However, most of the combinations studied have involved enzymatic catalysis of irreversible or quasi-irreversible reaction. In the present work, we have investigated the possibility of applying enzymatic electrocatalysis to a case where the electrochemical reaction drives a thermodynamically unfavorable reversible reaction. Such thermodynamically unfavorable reactions include most of the oxidations catalyzed by dehydrogenases. Yeast alcohol dehydrogenase (E.C. 1.1.1.1) was chosen as a model enzyme because the oxidation of ethanol is thermodynamically very unfavorable and because its kinetics are well known. The electrochemical reaction was the oxidation of NADH which is particularly attractive as a method of cofactor regeneration. Both the electrochemical and enzymatic reactions occur in the same batch reactor in such a way that electrical energy is the only external driving force. Two cases were experimentally and theoretically developed with the enzyme either in solution or immobilized onto the electrode's surface. In both cases, the electrochemical reaction could drive the enzymatic reaction by NADH consumption in solution or directly in the enzyme's microenvironment. However even for a high efficiency of NADH consumption, the rate of enzymatic catalysis was limited by product (acetaldedehyde) inhibition. Extending this observation to the subject of organic synthesis catalyzed by dehydrogenases, we concluded that thermodynamically unfavorable reaction and can only be used in a process if efficient NAD regeneration and product elimination are simultaneously carried out within the reactor.  相似文献   
83.
Methodology is presented for the determination of growth yield (Y(g)) and maintenance coefficient (m) for carbon utilization of plant cells grown in suspension culture. Estimation of Y(g) and m requires measurements of specific growth rate (micro) and specific rate of substrate uptake (q) at different growth limiting substrate concentrations. Batch culture of tobacco cells did not permit evaluation of Y(g) and m because micro is constant and maximal during most of the growth cycle. In batch culture, the period of declining specific growth rate is extremely brief because of the rapid transition from logarithmic growth to stationary phase. This occurs because the K(m) for growth is relatively small compared to the initial sucrose concentration. Thus, when the substrate level reaches the K(m), the large mass of cells rapidly depletes the remaining substrate. In contrast, semicontinuous culture facilitates the determination of Y(g) and m because various steady-state growth rates can be achieved. Mathematical expressions were developed to determine the effective values of micro and q over the semicontinuous replacement interval. The validity of this approach was verified by conducting simulations using experimentally determined parameters.  相似文献   
84.
Third instar tobacco hornworms (Manduca sexta L.: Sphingidae) on low dietary potassium had a lower relative growth rate than individuals on diets with potassium concentrations reflecting those in host-plants, due to decreased consumption rate, lower efficiencies of conversion of ingested and digested food (ECI and ECD), and a prolonged growth/feeding phase. Furthermore, these larvae, when placed on a diet with a moderate potassium concentration through the fourth stadium, ended up being smaller due to lower ECI and less biomass gained, and had a prolonged growth phase, which suggest an irreversible cost of the previous low potassium diet. Third instar hornworms on high potassium diets had lower ECI and ECD, and they had a prolonged growth phase. These individuals, when placed on a moderate potassium diet in the fourth stadium, gained less biomass, than those previously offered hostplant-like-potassium diets. Body potassium concentrations (% dw) at the end of the third stadium were similar among treatment groups. With increasing potassium concentrations in the diet, utilization efficiencies of potassium decreased and potassium concentrations in the frass increased. Correspondingly, water content (% fw) of the newly-molted fourth instar larvae declined with increasing potassium, indicating a passive loss of water during potassium excretion. Low and high dietary potassium reduced survivorship of third instar larvae; fourth instar caterpillars previously fed the low potassium diet also had poor survivorship. We conclude that, within the normal range of potassium concentrations in the hostplants, caterpillar performance is largely unaffected by potassium concentration, but that potassium-poor and potassium-rich diets, such as those hornworms may sometimes experience, can reduce growth and survivorship.  相似文献   
85.
Relative levels of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been determined in 16 discrete regions of adult rat brain by a quantitative immunofluorescence method. The distribution of immunofluorescence in brain sections was determined by interactive laser cytometry and related to hexokinase content by comparison with standard sections containing known amounts of the enzyme. In many of these regions, referred to here as group I regions, hexokinase content was correlated with previously reported basal rates of glucose utilization. However, several regions (group II regions) in which hexokinase content exceeded that expected from basal rates of glucose utilization were also detected. Compared with the corresponding regions from albino rat brain, higher hexokinase levels were found in the dorsal and ventral lateral geniculate (group I regions) of pigmented Norway rats, a result reflecting previously reported increased glucose utilization by these regions in pigmented rats. There was no difference in hexokinase levels in the superior colliculus, a group II structure, from albino and pigmented rats, a finding implying that a reported increase in rate of glucose utilization in the superior colliculus of pigmented rats is effected without an increase in hexokinase content. It is suggested that group II regions may be adapted to sustain increases in rates of glucose utilization that are, relative to basal rates, considerably greater than those experienced by group I regions.  相似文献   
86.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   
87.
Bacillus polymyxa ferments glucose to 1-2,3 butanediol, acetoin, ethanol, acetic acid, lactic acid, and formic acid. This research investigates product formation as a function of oxygen availability. A predictive model that simulates product distribution at known oxygen transfer rates is developed on the hypothesis that, in an energy-limited environment, B. polymyxa utilizes glucose and oxygen in the most efficient manner. The efficiency of utilization of glucose and oxygen is measured in terms of the ATP yields of each oxidative pathway. The identity of the products constituting the profile at the given oxygen transfer rate is determined by comparing the ATP production and consumption rates. While the ATP generated is calculated from a knowledge of the oxygen transfer rate and ATP yields of the oxidative pathways, the ATP consumption is estimated by the Pirt expression in terms of growth- and nongrowth-associated components. The product formation rates are obtained by solving ATP and NAD balance equations. They equate the production and consumption rates of these intermediates and are derived from the pseudo-steady-state hypothesis. The model is applied to continuous culture systems that are both open and closed with respect to biomass. At a given oxygen transfer rate, dilution rate, and inlet glucose concentration, the model predicts steady-state concentrations of two dominant fermentation endproducts with the help of four parameters that can be determined from independent experiments. In contrast with earlier approaches, the experimental studies are carried out in continuous culture. Product profiles are obtained at various oxygen transfer rates, fer rates, inlet glucose concentrations, and dilution rates. The effect of pH on the relative distribution of products is also demonstrated. Results indicate that the model is fairly successful in predicting product profiles as a function of oxygen availability. (c) 1992 John Wiley & Sons, Inc.  相似文献   
88.
Extractive lactic acid fermentation using ion-exchange resin   总被引:6,自引:0,他引:6  
Lactic acid fermentation is an end-product-inhibited reaction. The restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques. Studies were performed by attaching an ion-exchange resin packed column with a 2-L fermentor for separation of lactic acid. The fermentation, in a conventional batch mode, resulted in a lactic acid yield of 0.828 g . g(-1) and a lactic acid productivity of 0.313 g . L(-1) . h(-1). However, these could be further enhanced to 0.929 g . g(-1) and 1.665 g . L(-1) . h(-1) by extractive fermentation techniques. The effect of temperature on extractive fermentation was remarkable and has been included in this work.  相似文献   
89.
The integrated state of lambda in the host chromosome in lysogeny can be combined with its extrachromosomal replication in the lytic state to achieve high cloned gene productivities. Our previous studies on lambda expression systems(21,22) have shown 100% segregational stability of the cloned gene in lysogeny and cloned gene product levels up to 15% of total cell protein in a mutant lytic state. However, the expression phase of systems based on Escherichia coli JM109 and JM105 showed partial lysis of the productive culture despite a mutation in the lysis gene S of the lambda vector resulting in extracellular release of the cloned gene product. In the current study, we have eliminated partial lysis in the expression phase of lambda systems and conducted a detailed comparative analysis of these systems in relation to maximization of cloned gene productivity. The elimination of partial cell lysis by using a nonpermissive strain Y1089 did not enhance product yields vs. earlier systems that exhibited partial lysis. The elimination of nonessential lambda protein production by construction of a new vector NP326 did not yield higher product yields presumably because of the small fraction of these proteins in the lytic state. Temperature induction of the lysogen Y1089(NM1070) resulted in higher product levels than direct infection of Y1089 by the phage vector at a high multiplicity. Using infection experiments, we found the promoter lacUV5 in the vector lambdaZEQS to yield threefold higher product levels than lac in NM1070, suggesting possible further enhancement of productivity with stronger promoters. The occurrence or absence of partial lysis in lambda systems could be used beneficially to achieve extracellular or intracellular product as desired. The large capacity of lambda vectors for insert DNA suggests potential applications in obtaining highly amplified levels of operons and multienzyme systems. (c) 1992 John Wiley & Sons, Inc.  相似文献   
90.
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 mM of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 mM, respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 mM of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 mM were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号