首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1509篇
  免费   272篇
  国内免费   508篇
  2024年   4篇
  2023年   61篇
  2022年   48篇
  2021年   65篇
  2020年   106篇
  2019年   107篇
  2018年   104篇
  2017年   100篇
  2016年   101篇
  2015年   92篇
  2014年   125篇
  2013年   154篇
  2012年   103篇
  2011年   171篇
  2010年   102篇
  2009年   110篇
  2008年   111篇
  2007年   82篇
  2006年   79篇
  2005年   61篇
  2004年   44篇
  2003年   43篇
  2002年   43篇
  2001年   37篇
  2000年   19篇
  1999年   24篇
  1998年   26篇
  1997年   16篇
  1996年   16篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   12篇
  1991年   9篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   4篇
  1985年   6篇
  1984年   11篇
  1983年   5篇
  1982年   5篇
  1980年   4篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1958年   2篇
排序方式: 共有2289条查询结果,搜索用时 62 毫秒
11.
Some streams near Dorset in south-central Ontario suffer from acid precipitation via run-off and seepage from thin soils with little buffering capacity. A spring-summer survey of eight headwater streams revealed some characteristics of their insect communities which could be correlated with pH. The streams could be divided into three groups according to pH and community structure. In the most acid group (annual pH range 4.3–4.8), Ephemeroptera were absent from two streams although mature Leptophlebia were collected just after spring thaw from the most acid one (pH 4.3–4.5). One of these three streams also lacked Plecoptera but the others had two or three genera, all shredders. The second group of three streams (pH 5.0–6.3), with one exception, did support Ephemeroptera (3–4 genera) and Plecoptera (1–4 genera), most of the latter being shredders. In all six of these acid streams, Trichoptera were more diverse and more dense than Ephemeroptera and Plecoptera; again, shredders were clearly dominant, especially the limnephilid caddisfly, Frenesia difficilis (Walker). These six streams also had similar chironomid communities (densities were an order of magnitude higher than other insects). Dominance by Chironomini and abundant Tanypodinae typified the most acid streams. In contrast, the two streams in the third group (pH 5.3–6.7) had richer and more balanced communities in general with relatively fewer shredders (no Frenesia), more collectors, and fewer Chironomini and Tanypodinae. As a field experiment showed that autumn-shed leaves decomposed more slowly in acid than in non-acid streams, summer-growing shredders may benefit from the pulse of acidity at snowmelt.  相似文献   
12.
Abstract The effect of cadmium (Cd) on methane formation from methanol and/or H2–CO2 by Methanosarcina barkeri was examined in a defined growth medium and in a simplified buffer system containing 50 mM Tes with or without 2 mM dithiothreitol (DTT). No inhibition of methanogenesis by high concentrations of cadmium was observed in growth medium. Similarly, little inhibition of methanogenesis by whole cells in the Tes buffer system was observed in the presence of 430 μM Cd or 370 μM mercury (Hg) with 2 mM DTT. When the concentration of DTT was reduced to 0.4 mM, almost complete inhibition of methanogenesis from H2–CO2 and methanol by 600 μM Cd was observed. In the absence of DTT, 150 μM Cd inhibited methanogenesis from H2–CO2 completely and from methanol by 97%. Methanogenesis from H2–CO2 was more sensitive to Cd than that from methanol.  相似文献   
13.
A method is presented for the recovery of 40-80% of the protein from a 1 microgram/ml solution. The final protein pellet is free of detergent and other ionic compounds and is thus compatible with any denaturing solution. The primary structure of the protein is unaffected by the procedure, making the final pellet an ideal sample for any analytical procedure to determine protein structure.  相似文献   
14.
Abstract A saltern near La Baule (Bretagne, France) was remodeled in a programmable temperature and humidity controlled walk-in environmental chamber resembling the characteristics of the original saltern. The saltern showed different types of microbial mats predominantly composed of algae, oxy- and anoxyphotobacteria, and associated chemoorganotrophic bacteria, fungi and animals. Well-developed microbial mats were found up to a salinity of 10% during the three or four months in summer when salinity gradients and NaCl precipitation were established. The main phototrophic organisms were diatoms, the cyanobacteria Aphanothece, Microcoleus, Spirulina , and Oscillatoria , and Chromatiaceae. At higher salinity, Halobacterium sp., diatoms, and Dunaliella were dominant. Typical microbial mats and saltern-typical invertebrate, algal and bacterial species also developed in the saltern model, building up a stable community. The ionic composition of the brines and physicochemical parameters were similar to those determined for the original saltern. Different photosynthetic organisms, e.g. a filamentous purple bacterium and a hypersaline Chloroflexus -like organism, could be enriched within the microbial mats by changing the light regime.  相似文献   
15.
The physiological basis of bryophyte production   总被引:6,自引:0,他引:6  
In the main features of their carbon metabolism and physiological responses, bryophytes behave as normal C:) plants. However, their small size and frequent poikilohydric habit have important effects on the context in which these characteristics are expressed, and on their environmental physiology. Many are tolerant of drying out to low water contents (c. 5–10%, of dry weight). Photosynthesis declines rapidly with water loss, and resumes with greater or lesser delay on remoistening. The rate and completeness of recovery depend on the intensity and duration of desiccation, and on drought-hardening (perhaps largely related to protection of cell components from oxidative damage) which lakes place as the bryophyte dries. Most bryophytes, including species of well-illuminated habitats, function in effect as shade plants, with low chlorophyll a/b ratios, and become light-saturated at relatively low irradiance. Boundary-layer resistance is critically important in determining water loss from bryophytes in many situations. The time for which a poikilohydric species can photosynthesize after rain is determined by storage capacity and rate of water loss, both strongly influenced by growth-form. In sheltered habitats with extensive bryophyte cover water loss is largely determined by radiation balance, and may be very slow in deeply shaded places. Bryophyte growth-forms must represent an adaptive balance between water economy and needs for light capture and carbon and mineral nutrient acquisition.  相似文献   
16.
The effects of elevated carbon dioxide (CO2) concentration on plant water use are best evaluated on plants grown under field conditions and with measurement techniques that do not disturb the natural function of the plant. Heat balance sap flow gauges were used on individual main stems of wheat (Triticum aestivum L. cv Yecora rojo) grown under normal ambient conditions (control) and in a free-air CO2 enrichment (FACE) system in Arizona with either high (control + high H2O = CW; FACE + high H2O = FW) or low (control + low H2O = CD; FACE + low H2O = FD) irrigation regimens. Over a 30d period (stem elongation to anthesis), combinations of treatments were monitored with,10–40 gauges per treatment. The effects of increased CO2 on tiller water use were inconsistent in both the diurnal patterns of sap flow and the statistical analyses of daily sap flow (Ftot). Initial results suggested that the reductions in Ftot, from CO2 enrichment were small (,0–10%) in relation to the H2O treatment effect (,20–30%). For a 3d period, Ftot of FW was,19–26% less than that of CW (P = 0.10). Examination of the different sources of variation in the study revealed that the location of gauges within the experimental plots influenced the variance of the sap flow measurements. This variation was probably related to positional variation in subsurface drip lines used to irrigate plots. A sampling design was proposed for use of sap flow gauges in FACE systems with subsurface irrigation that takes into account the main treatment effects of CO2 enrichment and the other sources of variation identified in this study. Despite the small and often statistically non-significant differences in Ftot between the CW and FW treatments, cumulative water use of the FW treatment at the end of the first three test periods ranged from 7 to 23% lower than that of the CW treatment. Differences in sap flow between FW and CW compared well with treatment differences in evapotranspiration. The results of the study, based on the first reported sap flow measurements of wheat, suggest that irrigation requirements for wheat production, in the present climatic regimen of the south-western US, may be predicted to decrease slightly because of increasing atmospheric CO2.  相似文献   
17.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   
18.
The growth and morphology of Scots pine needles were studied in a long-term acid rain experiment in the far north of Finnish Lapland. Pine trees 5 m tall of age 50–70 years were exposed, by spraying the foliage and soil from a height of 2 m, to either clean water (IC) or acidified water over the period 1985–1992, the acidification site being divided into sub-areas in which the precipitation contained two levels of either sulphuric (Sm, Sh) or nitric (Nm, Nh) acid, or both (SNm, SNh). The treatments with medium and high sulphate-S over eight consecutive years yielded a total sulphur deposition of 3·4 and 17·1 gm−2, respectively, and those with medium and high nitrate-N a total nitrogen deposition of 1·1 and 5·9 g m−2. Needles were collected for light and electron microscopy, growth measurements and morphometry. Growth in branch height had decreased by about 40% after 6 years of SNm or SNh treatment, and needle growth by 15% in the SNh trees as compared with the irrigated control trees (IC), although decreases were statistically significant only with respect to the non-irrigated control trees (DC). Growth of branches and needles was slightly better in the Nh treatment than in the IC group. The areas of the whole needle, the mesophyll and the phloem decreased in response to SNh treatment as compared with IC or DC, and a statistically significant decrease of about 30–40% was seen in the area of the xylem in comparison with DC. Cellular damage was observed following the acid treatments, especially with a high acid load. The damage was manifested in collapse of the cellular compartments, increases in lipid accumulations and swelling or disorganization of the protoplast. Increased vacuolization of the cytoplasm, plasmalemma irregularities and chilling-type damage to the mitochondria were also observed.  相似文献   
19.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   
20.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号