首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119377篇
  免费   7007篇
  国内免费   11380篇
  2023年   1499篇
  2022年   1779篇
  2021年   2758篇
  2020年   2930篇
  2019年   4619篇
  2018年   3204篇
  2017年   3042篇
  2016年   3520篇
  2015年   4678篇
  2014年   6058篇
  2013年   8166篇
  2012年   5163篇
  2011年   6634篇
  2010年   5047篇
  2009年   5685篇
  2008年   5940篇
  2007年   6273篇
  2006年   5634篇
  2005年   5079篇
  2004年   4311篇
  2003年   3832篇
  2002年   3398篇
  2001年   2813篇
  2000年   2494篇
  1999年   2454篇
  1998年   2154篇
  1997年   1934篇
  1996年   1716篇
  1995年   1913篇
  1994年   1803篇
  1993年   1604篇
  1992年   1616篇
  1991年   1419篇
  1990年   1221篇
  1989年   1149篇
  1988年   1117篇
  1987年   1085篇
  1986年   755篇
  1985年   1197篇
  1984年   1576篇
  1983年   1111篇
  1982年   1519篇
  1981年   1067篇
  1980年   1073篇
  1979年   991篇
  1978年   602篇
  1977年   478篇
  1976年   392篇
  1975年   300篇
  1973年   295篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
62.
63.
Comparative assays were made in a spectrophotometer and a microcalorimeter for the reaction between acetylcholinesterase (EC 3.1.1.7) and acetylthiocholine. The rate of light absorbance change and the rate of heat flow were measured from similar and simultaneous reactions in spectrophotometer and microcalorimeter, respectively. At the enzyme activity levels studied, i.e., 0.05–0.15 I.U. in calorimetry and 1–4 I.U. in spectrophotometry, the reaction rates were linear and showed first-order kinetics. A highly significant positive correlation was seen between the two methods (r = 0.997). More importantly, spectrophotometric assay with acetylthiocholine (which utilized a secondary reaction with chromagen, dithiobisnitrobenzoic acid) stood in highly significant positive correlation with calorimetric assays (which did not require a chromagen) either with the same substrate (r = 0.976) or with acetylcholine (r = 0.900). It appears that microcalorimetry can be used in preference to spectrophotometry for enzyme kinetic studies to overcome the complexity of reaction mixture and interference problems and with the advantage of using natural substrates.  相似文献   
64.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
65.
Binding constants for the binding of high-affinity heparin to antithrombin at different ionic strengths were determined by fluorescence titrations and were also estimated from dissociation curves of the heparin-antithrombin complex. These curves were monitored by near-ultraviolet circular dichroism or fluorescence. The dependence of the binding constant on the activity of NaCl suggested that maximally 5–6 charged groups are directly involved in the interaction between the two macromolecules. Major pH-dependent changes of the interaction, as evident by changes of the spectroscopic properties of the complex between the molecules, were found to occur below pH 5.5 and above pH 8.5. The acid change, which was irreversible, was most likely caused by an irreversible conformational change of antithrombin. At alkaline pH, however, the gross conformation of antithrombin was stable up to pH 12, while the affinity of high-affinity heparin for antithrombin began to decrease markedly at pH 8.5. The dissociation curve, which was reversible, had a midpoint around pH 9.5. This is compatible with the loss of affinity being caused by either a local conformational change, by ionization of tyrosine or by titration of one or more amino groups.  相似文献   
66.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably.  相似文献   
67.
Phytochemical analysis of dried twigs of Marsdenia roylei (family Asclepiadaceae) has resulted in the isolation of a trisaccharide, maryal, and a diglycoside, rolinose. Their structures were determined as O-beta-D-oleandropyranosyl-(1-->4)-O-beta-D-digitoxopyranosyl++ +-(1-->4)-D- cymaral and ethyl O-beta-D-oleandropyranosyl-(1-->4)-O-3-O-methyl-6-deoxy-beta-D- allopyranoside, respectively, by chemical degradation and spectroscopic methods.  相似文献   
68.
The presence of litter has the potential to alter the population dynamics of plants. In this paper, we explore the effects of litter on population dynamics using a simple experimental laboratory system with populations of the annual crucifer, Cardamine pensylvanica. Using a factorial experiment with four densities and three litter levels, we determined the effect of litter on biomass and plant fecundity, and the life stages responsible for these changes in yield. Although litter had significant effects on seed germination and on seedling survivorship, we show, using a population dynamics model, that these effects were not demographically significant. Rather, the potential effect of litter on population dynamics resulted almost entirely from its effect on biomass. Persistent litter suppressed plant biomass and apparently removed the direct density effect present in the absence of litter. Thus, litter changed the shape of the recruitment curve from slightly humped to asymptotic. In addition to changing the shape of the recruitment curve, litter reduced the carrying capacity of the populations. Thus, the population dynamics model indicated that not all statistically significant responses were dynamically significant. Given the potential complexity of litter effects, simple population models provide a powerful tool for understanding the potential consequences of short-term responses. Received: 8 September 1999 / Accepted: 5 April 2000  相似文献   
69.
70.
The population dynamics of Heterodera glycines as influenced by alachlor, fenamiphos, and ethoprop alone and in herbicide-nematicide combinations were studied in the field. Numbers of H. glycines juveniles and eggs were higher at midseason and harvest where nematicides were applied. Fenamiphos alone or in combination with alachlor provided better control of H. glycines and greater seed yields than treatments with ethoprop. Numbers of H. glycines eggs at harvest in 1980 were positively correlated with numbers of juveniles at planting in 1981 and negatively related to seed yield in 1981.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号