首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55268篇
  免费   18386篇
  国内免费   1280篇
  2024年   21篇
  2023年   224篇
  2022年   206篇
  2021年   943篇
  2020年   3225篇
  2019年   4805篇
  2018年   4950篇
  2017年   4974篇
  2016年   4747篇
  2015年   4557篇
  2014年   4575篇
  2013年   5095篇
  2012年   4376篇
  2011年   4473篇
  2010年   3933篇
  2009年   3013篇
  2008年   3141篇
  2007年   2650篇
  2006年   2503篇
  2005年   2176篇
  2004年   1759篇
  2003年   1831篇
  2002年   1579篇
  2001年   1304篇
  2000年   839篇
  1999年   607篇
  1998年   304篇
  1997年   296篇
  1996年   229篇
  1995年   214篇
  1994年   182篇
  1993年   155篇
  1992年   166篇
  1991年   149篇
  1990年   98篇
  1989年   92篇
  1988年   63篇
  1987年   67篇
  1986年   55篇
  1985年   59篇
  1984年   51篇
  1983年   24篇
  1982年   49篇
  1981年   34篇
  1980年   34篇
  1979年   24篇
  1978年   15篇
  1977年   14篇
  1975年   13篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
72.
  1. Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.
  2. We explored community‐level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed‐grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [?20%, ?40%, ?60%, ?80%, and ?100%], water addition [+50%], and control [0% change in precipitation]) year‐round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.
  3. We found that community‐level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.
  4. Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community‐level responses (richness and evenness) at both extreme drought and added precipitation treatments.
  5. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community‐level responses to a gradient in precipitation, suggesting that management could buffer community‐level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
  相似文献   
73.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   
74.
75.
76.
77.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   
78.
Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large‐scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large‐scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy‐forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO‐influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids (r = .9), siganids (r = .9), and mullids (r = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI–juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña‐related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat‐forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.  相似文献   
79.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
80.
  1. Plant–animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant–animal interactions where they are the predator. Competition with animals is a potential antagonistic plant–animal interaction unique to carnivorous plants when they and animal predators consume the same prey.
  2. The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.
  3. Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet‐web spiders, and ground‐running spiders co‐exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet‐web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity–density. Ground‐running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.
  4. Sundews and spiders consumed springtails. Springtail activity–densities were lower, the higher the density of sundews. Both sheet‐web and ground‐running spiders were found less often where sundew densities were high. Sheet‐web size was smaller where sundew densities were high.
  5. The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号