首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28758篇
  免费   2488篇
  国内免费   2724篇
  2024年   38篇
  2023年   584篇
  2022年   573篇
  2021年   945篇
  2020年   990篇
  2019年   1112篇
  2018年   969篇
  2017年   898篇
  2016年   1005篇
  2015年   977篇
  2014年   1151篇
  2013年   1884篇
  2012年   1077篇
  2011年   1182篇
  2010年   893篇
  2009年   1305篇
  2008年   1379篇
  2007年   1407篇
  2006年   1356篇
  2005年   1339篇
  2004年   1202篇
  2003年   1062篇
  2002年   1076篇
  2001年   886篇
  2000年   827篇
  1999年   737篇
  1998年   627篇
  1997年   560篇
  1996年   550篇
  1995年   488篇
  1994年   489篇
  1993年   503篇
  1992年   448篇
  1991年   367篇
  1990年   331篇
  1989年   289篇
  1988年   237篇
  1987年   237篇
  1986年   175篇
  1985年   341篇
  1984年   295篇
  1983年   191篇
  1982年   239篇
  1981年   175篇
  1980年   137篇
  1979年   118篇
  1978年   76篇
  1977年   75篇
  1976年   49篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Seasonal reproduction is common among mammals at all latitudes, even in the deep tropics. This paper (i) discusses the neuroendocrine pathways via which foraging conditions and predictive cues such as photoperiod enforce seasonality, (ii) considers the kinds of seasonal challenges mammals actually face in natural habitats, and (iii) uses the information thus generated to suggest how seasonal reproduction might be influenced by global climate change. Food availability and ambient temperature determine energy balance, and variation in energy balance is the ultimate cause of seasonal breeding in all mammals and the proximate cause in many. Photoperiodic cueing is common among long-lived mammals from the highest latitudes down to the mid-tropics. It is much less common in shorter lived mammals at all latitudes. An unknown predictive cue triggers reproduction in some desert and dry grassland species when it rains. The available information suggests that as our climate changes the small rodents of the world may adapt rather easily but the longer lived mammals whose reproduction is regulated by photoperiod may not do so well. A major gap in our knowledge concerns the tropics; that is where most species live and where we have the least understanding of how reproduction is regulated by environmental factors.  相似文献   
22.
Oostatic hormone, the hormone that inhibits vitellogenesis in mosquitoes, was purified 7,000-fold with a recovery of 70% from the ovaries of the mosquito Aedes aegypti. The purification procedure included heat treatment and chromatography on ion exchange and gel filtration columns. The hormone is a small peptidelike molecule of molecular weight 2,200 at pH 4.5, which aggregates into larger molecular species of trimer and octamer at pH 7.0 as determined by gel filtration. The hormone is positively charged at pH 7.8 and has a low Rf at pH 9.4 on disc gel electrophoresis. Injection of purified oostatic hormone (9 ng) into female mosquitoes inhibited yolk deposition and vitellogenin synthesis. Activity of the oostatic hormone in the mosquito ovary increased rapidly following blood feeding and reached a maximum after 48 h. Oostatic hormone of A. aegypti injected into autogenous Aedes taeniorhynchus inhibited egg development. Repeated injections of dilute oostatic hormone at 24 h intervals partially arrested egg development, resulting in 60% reduction in the number of eggs laid. This hormone does not block release of egg development neurosecretory hormone (EDNH) from the mosquito brain but rather appears to act on the ovary.  相似文献   
23.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   
24.
A method is described for the subcellular fractionation of goldfish xanthophores. The procedure produces relatively pure fractions of caroteniod droplets, pterinosomes, cytosol and what appears to be plasma membrane. The presence of a distinct pattern of proteins is shown to be associated with the carotenoid droplets. Treatment of the xanthophores with ACTH affects the buoyant density of some carotenoid droplets and stimulates the phosphorylation of a polypeptide associated with the carotenoid droplets.  相似文献   
25.
26.
27.
The reproductive activity and the physiological state of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were investigated off the coast of NW Spain during autumn to evaluate the effect of short food resources on both populations. Phytoplankton biomass was low, and neither phytoplankton size distribution nor composition was suitable to support high reproductive rates. Accordingly, egg production rates (EPR) were much lower than maximum rates for both species, pointing to food limitation. The reproductive index (RI), which represents the proportion of females with mature gonads, was < 50% at each of the three zones into which the sampling area was divided (coast, shelf and ocean). Potential recruitment rates were very low except at some nearshore stations, where the highest concentrations of chlorophyll-a (Chl-a), diatoms, dinoflagellates and large cells were found. EPR of C. helgolandicus and C. carinatus were correlated with phytoplankton biomass and unaffected by temperature. Phytoplankton carbon ingestion explained ca. 50% of the variability in EPR for both species. At most of the stations, herbivory was insufficient to cover the carbon requirements for reproduction and respiration, so females probably fed on heterotrophic prey to meet their demands. However, given the low fecundity observed, this omnivorous diet did not seem to be optimum for reproduction, and a severe food limitation is thus suggested. Furthermore, the high C/N values measured point to a notable lipid storage, but given the low EPR found, lipid reserves were probably invested into female maintenance rather than into gonad maturation. C. helgolandicus and C. carinatus populations did not mirror phytoplankton biomass distribution, but they correlated well when considering only copepodites V (CV). The CV could be preparing for the overwintering, storing lipid reserves to ensure a successful diapause, and they could also be advected by the poleward current detected during the study. Females showed a diel feeding rhythm, with highest ingestion rates during night. From our results, it follows that C. helgolandicus and C. carinatus females did not perform diel vertical migrations. We suggest that this behaviour is likely due to the food-limiting conditions, which make it more advantageous to remain at the surface during daytime.  相似文献   
28.
29.
Biomass production and plant species diversity in grassland in southern England was monitored before and after a change from conventional to organic farming. Our 18-year study, part of the UK's Environmental Change Network long-term monitoring programme, showed that the cessation of artificial fertiliser use on grassland after conversion to organic farming resulted in a decrease in biomass production and an increase in plant species richness. Grassland productivity decreased immediately after fertiliser application ceased, and after two years the annual total biomass production had fallen by over 50%. In the subsequent decade, total annual grassland productivity did not change significantly, and yields reached 31–66% of the levels recorded pre-management change. Plant species richness that had remained stable during the first 5 years of our study under conventional farming, increased by 300% over the following 13 years under organic farm management. We suggest that the change in productivity is due to the altered composition of species within the plots. In the first few years after the change in farming practice, high yielding, nitrogen-loving plants were outcompeted by lower yielding grasses and forbs, and these species remained in the plots in the following years. This study shows that grassland can be converted from an environment lacking in plant species diversity to a relatively species-rich pasture within 10–15 years, simply by stopping or suspending nitrogen additions. We demonstrate that the trade-off for increasing species richness is a decrease in productivity. Grassland in the UK is often not only managed from a conservation perspective, but to also produce a profitable yield. By considering the species composition and encouraging specific beneficial species such as legumes, it may be possible to improve biomass productivity and reduce the trade-off.  相似文献   
30.
Plant material is a rich source of valuable compounds such as flavanones. Their different forms influence bioavailability and biological activity, causing problems with the selection of plant material for specific purposes. The purpose of this research was to determine selected flavanone (eriodictyol, naringenin, liquiritigenin, and hesperetin) enantiomer contents in free form and bonded to glycosides by an RP‐UHPLC‐ESI‐MS/MS method. Different parts (stems, leaves, and flowers) of goldenrod (Solidago virgaurea L.), lucerne (Medicago sativa L.), and phacelia (Phacelia tanacetifolia Benth.) were used. The highest content of eriodictyol was found in goldenrod flowers (13.1 μg/g), where it occurred mainly as the (S)‐enantiomer, and the greatest proportion of the total amount was bonded to glycosides. The richest source of naringenin was found to be lucerne leaves (4.7 μg/g), where it was mainly bonded to glycosides and with the (S)‐enantiomer as the dominant form. Liquiritigenin was determined only in lucerne, where the flowers contained the highest amount (1.2 μg/g), with the (R)‐enantiomer as dominant aglycone form and the (S)‐enantiomer as the dominant glycosylated form. The highest hesperetin content was determined in phacelia leaves (0.38 μg/g), where it was present in the form of a glycoside and only as the (S)‐enantiomer. A comparison of the different analyte forms occurring in different plant parts was performed for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号