首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63291篇
  免费   5289篇
  国内免费   4587篇
  2024年   109篇
  2023年   1266篇
  2022年   1393篇
  2021年   2378篇
  2020年   2366篇
  2019年   2993篇
  2018年   2481篇
  2017年   1879篇
  2016年   2102篇
  2015年   2439篇
  2014年   3367篇
  2013年   4515篇
  2012年   2519篇
  2011年   3060篇
  2010年   2292篇
  2009年   2865篇
  2008年   2863篇
  2007年   3010篇
  2006年   2791篇
  2005年   2641篇
  2004年   2396篇
  2003年   2116篇
  2002年   2069篇
  2001年   1751篇
  2000年   1508篇
  1999年   1325篇
  1998年   1181篇
  1997年   1044篇
  1996年   1028篇
  1995年   937篇
  1994年   920篇
  1993年   839篇
  1992年   797篇
  1991年   694篇
  1990年   557篇
  1989年   528篇
  1988年   472篇
  1987年   393篇
  1986年   325篇
  1985年   429篇
  1984年   479篇
  1983年   273篇
  1982年   349篇
  1981年   335篇
  1980年   245篇
  1979年   225篇
  1978年   163篇
  1977年   119篇
  1976年   122篇
  1974年   57篇
排序方式: 共有10000条查询结果,搜索用时 835 毫秒
991.
Interactions of polyamines and nitrogen nutrition in plants   总被引:4,自引:0,他引:4  
Biogenic amines occupy an important position among the many nitrogenous plant compounds. Polyamines are part of the overall metabolism of nitrogenous compounds, yet they do not seem to function in the 'normal' nitrogen nutrition. Rather, these widespread polycations (e. g. putrescine, spermidine and spermine) are involved in the regulation of growth and stress, probably by binding to negatively charged macromolecules. In addition, some diamines and polyamines are metabolized to yield 'secondary 'metabolites such as nicotine and other alkaloids. Previous studies have indicated that the ratio of nitrate to ammonium nutrition affects polyamine biosynthesis and content in intact plants. Thus, an increase in putrescine accumulation was found under conditions of excess ammonium ions, relative to nitrate. Modifications of nitrogen sources in the culture medium of tobacco cell suspensions (depletion of ammonium nitrate, or potassium nitrate, or both) resulted in marked changes in the content of cellular free polyamines. Considerable changes in the content of specific polyamines were also found with exposure to specific inhibitors of polyamine biosynthesis (difluoromethyl ornithine, difluoromethyl arginine, cyclohexylamine, methylglyoxal-bis-guanylhydrazone). However, a combination of nitrogen depletion of the medium and some inhibitors resulted in a very marked over-production of spermidine and spermine. The significance of these findings is discussed in relation to the assumption that polyamines act as a metabolic buffer, and maintain cellular pH under conditions where ammonium assimilation produces an excess of protons.  相似文献   
992.
Elongation growth of hypocotyl sections of Vigna unguiculata under xylem perfusion was significantly enhanced when acid was applied by acid-aerosol to an abraded hypocotyl surface in the air. The in vivo wall extensibility (φ) and the effective turgor (Pi– Y), both of which were determined by the pressure-jump method, increased during acid-induced growth as observed in IAA-induced growth. The intracellular pressure (Pi), however, decreased significantly at the beginning of acid-induced growth whereas Pi scarcely changed in IAA-induced growth. This result indicates that protons increase the effective turgor by decreasing the yield threshold as IAA does. There seems to be no essential difference between proton and auxin in the effects on the in vivo mechanical properties of the surface cell wall.  相似文献   
993.
In sesquioxide-rich soils of tropical and subtropical areas and volcanic-ash soils with high levels of active Al(Fe), large amounts of phosphate fertilizers are needed to overcome their high P-fixation capacity (quenching strategy). A greenhouse pot experiment has been used to evaluate the effectiveness of city refuse compost (CRC) as a P-source for these variable-charge soils, compared to inorganic P. Mature CRC and K2HPO4 were applied at rates equivalent to 125, 250, 375, 500 and 625 kg P ha–1 to a ferrallitic soils from Tenerife Island (Andeptic Paleudult) with a high content in active Al+Fe (4.82%) and a high P-fixation capacity (87%). Perennial ryegrass (Lolium perenne L.) was grown in pots and plants were harvested at regular intervals after seedling emergence. CRC increases plant P concentration and soil labile-P proportional to the applied rate. The best results were obtained from a compost application of 30 t ha–1 equivalent-rate, after a residence time of at least three months. An important residual effect in the supply capacity of P in relation to the phosphate fertilizer was also observed. The relative agronomic effectiveness (RAE) in comparison to K2HPO4 was 66% after 6 months, considering P uptake + soil labile-P. The soil P-fixation capacity was significantly reduced from a compost application of 40 t ha–1 equivalent-rate. Competition in adsorption between organic ligands and phosphate, in combination with net mineralization of organic P in compost, might account for the high RAE value obtained. The main conclusion is that the city refuse compost could be a suitable P-amendment for resquioxic soils due to its high RAE, and the residual effect on P-supply. ei]H. Lambers  相似文献   
994.
The present study aims at characterizing plant water status under field conditions on a daily basis, in order to improve operational predictions of plant water stress. Ohm's law analog serves as a basis for establishing daily soil-plant relationships, using experimental data from a water-limited soybean crop: 227-1. The daily transpiration flux, T, is estimated from experimental evapotranspiration data and simulated soil evaporation values. The difference, 227-2, named the effective potential gradient, is derived from i) the midday leaf potential of the uppermost expanded leaves and ii) an effective soil potential accounting for soil potential profile and an effectiveness factor of roots competing for water uptake. This factor is experimentally estimated from field observation of roots. G is an apparent hydraulic conductance of water flow from the soil to the leaves. The value of the lower potential limit for water extraction, required to assess the effective soil potential, is calculated with respect to the plant using the predawn leaf potential. It is found to be equal to –1.2 MPa. It appears that over the range of soil and climatic conditions experienced, the daily effective potential gradient remains constant (1.2 MPa), implying that, on a daily basis, transpiration only depends on the hydraulic conductance. The authors explain this behaviour by diurnal variation of osmotic potential, relying on Morgan's theory (1984). Possible generalization of the results to other crop species is suggested, providing a framework for reasoning plant water behaviour at a daily time step.  相似文献   
995.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   
996.
Fluorescent Pseudomonas sp. strain 267 promotes growth of nodulated clover plants under gnotobiotic conditions. In the growth conditions (60 M FeCl3), the production of siderophores of the pseudobactin-pyoverdin group was repressed. Plant growth enhancement results from secretion of B vitamins by Pseudomonas sp. strain 267. This was proven by stimulation of clover growth by naturally auxotrophic strains of Rhizobium leguminosarum bv. trifolii and marker strains E. coli thi- and R. meliloti pan- in the presence of the supernatant of Pseudomonas sp. strain 267. The addition of vitamins to the plant medium increased symbiotic nitrogen fixation by the clover plants.  相似文献   
997.
The relative importance of changes in leaf expansion rate (LER) and leaf conductance (g1) in the control of crop transpiration depends primarily on their sensitivity to soil water deficits. The aim of this paper was to quantify the responses of LER and g1 to soil water deficits in sunflower (Helianthus annuus L.) under conditions of moderate (spring) and high (summer) evaporative demand. Soil water content, g1, and LER were measured in dryland (DRY) and daily-irrigated (WET) crops established on a deep sandy-loam (Typic Xerofluvent) in a Mediterranean environment. There was no difference between g1 of DRY and WET plants (p>0.20) in contrast with a highly significant difference in LER (p<0.001). Even under the harsh conditions of the summer experiment, g1 did not respond to water deficit in a ten-day period in which LER of DRY plants was reduced to approx. 30% of that measured in WET controls. This field study indicates that g1 plays at most a minor role in the control of sunflower transpiration in the pre-anthesis period and confirms the importance of leaf expansion in the regulation of gas exchange of expanding canopies subjected to soil water deficits.  相似文献   
998.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   
999.
The role of phytochelates in plant growth and productivity   总被引:1,自引:0,他引:1  
Plants require minimal amounts of certain metals (Zn,Fe,Cu,etc) for optimal growth and productivity, but excess of these metals leads to cell death. When growth is limited by metal excess or metal deficiency plants respond by synthesizing nonproteinogenic chelating substances. Phytosiderophores are secreted by roots of iron deficient grasses and are important in providing sufficient Fe for normal growth. In response to growth-inhibitory levels of heavy metals plants synthesize metal-binding phytochelatins which detoxify excess metals. Biostimulants such as humic substances and oligomers of lactic acid have properties in common with both phytosiderophores and phytochelatins. The word phytochelates is proposed as a generic term to cover substances that affect plant growth by acting as chelating agents.  相似文献   
1000.
Immature zygotic embryos from spring barley cv. Dissa were used to induce somatic embryogenenesis. Up to 158 germinated somatic embryos could be recovered per plated zygotic embryo. Critical factors for obtaining a high yield of regenerants were the size of the explant, the level of 2,4-D used for callus induction and the careful division of callus at each subculture. Use of microsections of immature embryos as explants revealed a pronounced gradient of callus formation and embryogenic response across the scutellum. Sections from the scutellar tissue at the coleoptilar end of the embryo gave the most callus and were highly embryogenic. The regeneration response of sectioned explants was comparable to that recovered from intact embryos of similar size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号