首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13286篇
  免费   670篇
  国内免费   448篇
  2023年   119篇
  2022年   151篇
  2021年   253篇
  2020年   258篇
  2019年   284篇
  2018年   337篇
  2017年   229篇
  2016年   245篇
  2015年   361篇
  2014年   519篇
  2013年   750篇
  2012年   352篇
  2011年   460篇
  2010年   417篇
  2009年   517篇
  2008年   538篇
  2007年   555篇
  2006年   516篇
  2005年   485篇
  2004年   463篇
  2003年   431篇
  2002年   394篇
  2001年   308篇
  2000年   288篇
  1999年   269篇
  1998年   258篇
  1997年   235篇
  1996年   204篇
  1995年   281篇
  1994年   247篇
  1993年   247篇
  1992年   236篇
  1991年   213篇
  1990年   210篇
  1989年   225篇
  1988年   232篇
  1987年   204篇
  1986年   163篇
  1985年   224篇
  1984年   346篇
  1983年   243篇
  1982年   294篇
  1981年   239篇
  1980年   201篇
  1979年   183篇
  1978年   63篇
  1977年   44篇
  1976年   41篇
  1975年   13篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
32.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   
33.
Summary Pollen mother cells at early meiotic prophase fromFritillaria lanceolata, F. mutica, Tulbaghia violacea, the lily “Formobel”,Triticum aegilopoides, T. dicoccoides, T. aestivum and synaptic and asynaptic forms ofT. durum were studied in thin sections with the electron microscope (a) in relation to distribution of nuclear pores (b) in respect of fine structure of the pore complex in those of the first four. The pores were distributed in random clusters during leptotene to pachytene in all plants, except in the two forms ofT. durum where there were either no pores or so few that they were not detectable. Probably correlated with this, the two membranes of the nuclear envelope were often widely separated and frequently sacculated. No pores were seen at leptotene in the part of the envelope to which, in theFritillarias and lily, the nucleolus was adpressed at this time. Evidence supporting a recent model which proposes that annuli are composed of three rings of eight granular subunits was obtained. These subunits as well as a dense central element, observed in most pores, were composed of filaments about 3 nm in diameter and evidently protein in character. There was evidence of a continuity between filaments in the central element and those in the rings of subunits which encircle the pore aperture at both the nuclear and cytoplasmic sides of the pore. In profiles of pores knobbed filaments were sometimes seen extending laterally from the pore wall into the perinuclear space at two sides. Questions concerning the role of the annulus are discussed. The author wish to thank Mr. R. F. Scott for construction to the model.  相似文献   
34.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   
35.
The villus cavity cells, a specific cell type of the chick chorioallantoic membrane, express both cytosolic carbonic anhydrase in their cytoplasm and [Formula: See Text] anion exchangers at their basolateral membranes. By immunohistochemical analysis, we show here that villus cavity cells specifically react with antibodies directed against the membrane-associated form of carbonic anhydrase, CAIV. Staining is restricted to the apical cell membranes, characteristically invaginated toward the shell membrane, as well as to endothelia of blood vessels present in the mesodermal layer. The occurrence of a membrane-associated CA form at the apical pole of villus cavity cells, when definitively confirmed, would be fairly consistent with the role proposed for these cells in bicarbonate reabsorption from the eggshell so to prevent metabolic acidosis in the embryo during development.  相似文献   
36.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
37.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   
38.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
39.
Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号