首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   83篇
  国内免费   91篇
  2024年   3篇
  2023年   33篇
  2022年   21篇
  2021年   40篇
  2020年   40篇
  2019年   48篇
  2018年   36篇
  2017年   41篇
  2016年   39篇
  2015年   26篇
  2014年   54篇
  2013年   68篇
  2012年   42篇
  2011年   66篇
  2010年   34篇
  2009年   60篇
  2008年   67篇
  2007年   56篇
  2006年   52篇
  2005年   45篇
  2004年   58篇
  2003年   46篇
  2002年   38篇
  2001年   38篇
  2000年   33篇
  1999年   25篇
  1998年   25篇
  1997年   35篇
  1996年   29篇
  1995年   9篇
  1994年   21篇
  1993年   19篇
  1992年   13篇
  1991年   14篇
  1990年   19篇
  1989年   18篇
  1988年   12篇
  1987年   11篇
  1986年   13篇
  1985年   16篇
  1984年   7篇
  1983年   15篇
  1982年   7篇
  1981年   8篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有1412条查询结果,搜索用时 15 毫秒
51.
52.
ABSTRACT

Introduction: Due to the relatively low mutation rate and high frequency of copy number variation, finding actionable genetic drivers of high-grade serous carcinoma (HGSC) is a challenging task. Furthermore, emerging studies show that genetic alterations are frequently poorly represented at the protein level adding a layer of complexity. With improvements in large-scale proteomic technologies, proteomics studies have the potential to provide robust analysis of the pathways driving high HGSC behavior.

Areas covered: This review summarizes recent large-scale proteomics findings across adequately sized ovarian cancer sample sets. Key words combined with ‘ovarian cancer’ including ‘proteomics’, ‘proteogenomic’, ‘reverse-phase protein array’, ‘mass spectrometry’, and ‘adaptive response’, were used to search PubMed.

Expert opinion: Proteomics analysis of HGSC as well as their adaptive responses to therapy can uncover new therapeutic liabilities, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is a pressing need to better understand how the genomic and epigenomic heterogeneity intrinsic to ovarian cancer is reflected at the protein level and how this information could be used to improve patient outcomes.  相似文献   
53.
Long‐term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness‐maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade‐offs and appropriate time scales into account is critical when interpreting phenological patterns.  相似文献   
54.
55.
Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2′-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2′-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2′-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.  相似文献   
56.
57.
A central tenet of evolutionary explanations for ageing is that the strength of selection wanes with age. However, data on age-specific expression and benefits of sexually selected traits are lacking—particularly for traits subject to sexual conflict. We addressed this by using as a model the responses of Drosophila melanogaster females of different ages to receipt of sex peptide (SP), a seminal fluid protein transferred with sperm during mating. SP can mediate sexual conflict, benefitting males while causing fitness costs in females. Virgin and mated females of all ages showed significantly reduced receptivity in response to SP. However, only young virgin females also showed increased egg laying; hence, there was a narrow demographic window of maximal responses to SP. Males gained significant ‘per mating’ fitness benefits only when mating with young females. The pattern completely reversed in matings with older females, where SP transfer was costly. The overall benefits of SP transfer (hence opportunity for selection) therefore reversed with female age. The data reveal a new example of demographic variation in the strength of selection, with convergence and conflicts of interest between males and ageing females occurring over different facets of responses to a sexually antagonistic trait.  相似文献   
58.
To investigate the responses of castor bean to repeated drying–wetting cycles (RDWC), morpho-physiological parameters of two cultivars (Jiaxiang 2 and Hangbi 8) were determined by a pot experiment under well-watered control and RDWC. RDWC inhibited plant growth and leaf development, decreased water loss rate (WLR), and enhanced leaf mass per area (LMA) and chlorophyll content as indicated by spectral reflectance indices for both cultivars. Photosynthesis was inhibited by progressive drought stress but quickly recovered after rewatering for each cycle. Both cultivars exhibit a similar pattern of acclimation to RDWC: (1) higher LMA and lower WLR, (2) increased photosynthetic capacity under drought stress with increasing cycle numbers, (3) quick recovery and over-compensation for photosynthesis after rewatering, and (4) increased chlorophyll content. Jiaxiang 2 shows a high capacity for water preservation under drought stress and an over-compensation for photosynthesis after rewatering compared with Hangbi 8.  相似文献   
59.
60.
Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号