首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   4篇
  2011年   3篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   8篇
  2004年   9篇
  2003年   11篇
  2002年   4篇
  2001年   11篇
  2000年   3篇
  1999年   8篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
11.
We report the formation and appearance of loosely stacked extended grana like structures along with plastoglobuli in the chloroplasts isolated from 27-day old senescing cucumber cotyledons. The origin and the nature of these extended grana structures have not been elucidated earlier. We isolated Photosystem I complexes from 6-day-old control and 27-day-old senescing cotyledons. The chlorophyll a/b ratio of the isolated Photosystem I complex obtained from 6-day cotyledons was 5–5.5 as against a ratio of 2.9 was found in Photosystem I complexes obtained from 27-day-old senescing cotyledons. We also found that the presence of LHC II in the Photosystem I complexes isolated from 27-day cotyledonary chloroplasts. The presence of LHC II in Photosystem I complexes in senescing and not in control samples, clearly suggest the detachment and diffusion of LHC II complexes from stacked grana region to Photosystem I enriched stroma lamellar region thereby, forming loose disorganized extended grana structures seen in the transmission electron microscope. Furthermore, we show that under in vitro condition the senescing cotyledon chloroplasts exhibited lower extent of light induced phosphorylation of LHC II than the control samples suggesting a possible irreversible phosphorylation and diffusion of LHC II in vivo during the progress of senescence in Cucumis cotyledons. From these findings, we suggest that the senescence induced phosphorylation of LHC II and its migration towards Photosystem I may be a programmed one some how causing the destruction of the thylakoid membrane. The released membrane components may be stored in the plastoglobuli prior to their mobilization to the younger plant parts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
12.
Photosystem I (PS I) complexes from two strains of the marine photosynthetic prokaryote Prochlorococcus, MED4 (= clone CCMP1378) and SS120 (= clone CCMP1375), were isolated by centrifugation on sucrose gradients after detergent treatment. The PS I-enriched fractions of both strains contained about 100 chlorophyll molecules per P700. Electron microscopy showed that the PS I complexes were in a trimeric form. The characteristic long wavelength fluorescence emission of PS I at 77 K, currently observed in chloroplasts and most cyanobacteria was absent both in intact cells and in PS I preparations of both strains. The major proteins of the PS I-enriched fractions were identified immunologically as PsaA and PsaB. Two proteins with apparent molecular masses of about 21 and 25 kDa were present in PS I preparations of Prochlorococcus, whereas the small PS I subunits in cyanobacteria all have molecular masses below 18 kDa. The 25 kDa protein showed a strong cross-reaction with a heterologous antibody against PsaL. Relatedness of the 21 kDa protein to PsaF was demonstrated by internal protein sequencing. Although only trace amounts of the major divinyl-Chl a/b-binding antenna complexes were present in the PS I preparations, significant amounts of divinyl-Chl b were observed in this fraction. The putative organization of this Chl b in PS I is discussed.  相似文献   
13.
Pearl millet (Pennisetum glaucum L. cv. HHB-67) seeds were pre-soaked in sulphydryl compounds (dithiothreitol, thioglycollic acid, thiourea, and cysteine). In plants at 59 and 67 d after sowing (DAS), activities of photosystem (PS) 2 (ferricyanide site) and PS1, both chloroplastic and total superoxide dismutase, glutathione reductase, and glutathione-S-transferase increased after all sulphydryl pre-treatments at both stages of plant development. Also dry matter of plant parts sampled at 55 DAS was higher after thiol-treatments in comparison with control.  相似文献   
14.
Functional features of Scenedesmus obliquus: wild type 276–6 strain (WT) and its two mutants reported as photosystem I‐deficient (mutant 56.80) and photosystem II‐deficient (mutant 57.80) were characterized. Algae were cultured aseptically under continuous light or in darkness on mineral bold basal medium (BBM), yeast extract‐enriched BBM and yeast extract to evaluate the physiology of algal cells under photoautotrophic, mixotrophic and heterotrophic conditions. Growth, superoxide dismutase activity and photosynthetic parameters, including polyphasic fluorescence rise during the first seconds of chlorophyll a illumination (OJIP), were analyzed to find relationships between the photosynthetic/respiratory activity of the cells, occurrence of oxidative stress and trophic conditions applied to PSs‐deficient algae. Despite the highest superoxide dismutase activity, indicating the presence of oxidative stress, mixotrophic conditions appeared to be optimal for S. obliquus WT and mutant strains kept in non‐aerated cultures. OJIP analysis indicated that in mutant 56.80 part of photosystem (PS) I was functional and in mutant 57.80 residual PS II activity was found.  相似文献   
15.
An inverse linear relationship between chlorophyll fluorescence yield (R) and light intensity was recorded in the near-surface waters of six lakes (New Zealand, England) of greatly different trophic status and phytoplankton species composition. This surface depression of R values could be removed by incubation of samples in dim light or darkness and was not observed in situ below a threshold irradiance (146 μEin ·m?2·s?1 for Lake Taupo, New Zealand). The time course of chlorophyll fluorescence depression and recovery in response to light treatment was measured in samples from Lake Windermere (England). Fluorescence exponentially decreased upon exposure to bright light and the response was 100% (5 m samples) or 83% (dim light-adapted 0 m samples) complete within 2 min. An increase in R values in the dim light occurred after a lag of 60 s and the rate of increase decreased exponentially with time. Full recovery took 15 min or more. Deep (6.5 m) populations from Lake Windermere exhibited large, time-dependent variations in chlorophyll fluorescence over the first 25 s of exposure to 450 nm light, whereas surface populations did not. These data were interpreted in terms of decreased spillover from PSII to PSI with increasing depth, to a minimum at the threshold light intensity below which cells are in light state 1.  相似文献   
16.
Photoinhibition of photosynthesis was investigated in control (C) and chilling night (CN) leaves of grapevine under natural photoperiod at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the potential efficiency of photosystem (PS) 2, Fv/Fm was measured at midday, it markedly declined with significant increase of F0 in CN leaves. In isolated thylakoids, the rate of whole chain and PS2 activity were markedly decreased in CN leaves than control leaves at midday. A smaller inhibition of PS1 activity was also observed in both leaf types. Later, the leaves reached maximum PS2 efficiencies similar to those observed in the morning during sampling at evening. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the PS2 activity in both leaf types at midday. Thus CN enhanced inactivation on the acceptor side of PS2 in grapevine leaves. Quantification of the PS2 reaction centre protein D1 following midday exposure of leaves showed pronounced differences between C and CN leaves. The marked loss of PS2 activity in CN leaves noticed in midday samples was mainly due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   
17.
A chlorophyll-deficient xantha mutant of cotton (Gossypium hirsutum L.) was examined with respect to development and structural organization of the chloroplast membrane system as affected by disruption of early stages of chlorophyll biosynthesis in the light. The analysis of early chlorophyll precursors showed that the mutant is unable to synthesize 5-aminolevulinic acid (5-ALA) in the light. The disorders in early stages of chlorophyll biosynthesis arrested the development of chloroplast membrane system at the stage of vesicles and single thylakoids. The accumulation of 2–5% chlorophyll in the mutant was related to the formation of light-harvesting chlorophyll-a/b-protein complexes I and II, whereas pigment-protein complexes composing reaction centers of photosystem I and photosystem II were lacking. It is concluded that the chloroplast membrane system in the mutant with impaired 5-ALA synthesis is incapable of development and is even reduced upon long-term growing under light.  相似文献   
18.
Solubilization of thylakoid membranes of Cyclotella cryptica with dodecyl-beta maltoside followed by sucrose density gradient centrifugation or deriphate polyacrylamide gel electrophoresis resulted in the isolation of pigment protein complexes. These complexes were characterized by absorption and fluorescence spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western immunoblotting using antisera against fucoxanthin chlorophyll a/c-binding proteins and the reaction center protein D2 of photosystem II. Sucrose density gradient centrifugation yielded four bands. Band 1 consisted of free pigments with minor amounts of fucoxanthin chlorophyll a/c-binding proteins. Bands 2, 3, and 4 represented a major fucoxanthin chlorophyll a/c-binding protein fraction, photosystem II, and photosystem I, respectively. Deriphate polyacrylamide gel electrophoresis gave rise to five bands, representing photosystem I, photosystem II, two fucoxanthin chlorophyll a/c-binding protein complexes, and a band mostly consisting of free pigments. In the Western immunoblotting experiments, the specific association of two fucoxanthin chlorophyll a/c-binding proteins, Fcp2 and Fcp4, to the photosystems could be demonstrated. In vivo experiments using antibodies against phosphothreonine residues and in vitro studies using [gamma-32P]ATP showed that fucoxanthin chlorophyll a/c binding-proteins of 22 kDa became phosphorylated.  相似文献   
19.
The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles. Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial exogenous electron donors, diphenyl carbazide (DPC) and NH2OH, significantly restored the loss of PS2 activity in shade needles. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28–25, 23, and 17 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the watersplitting complex was diminished significantly in shade needles.  相似文献   
20.
This study aimed to compare the ability of two Arthrospira platensis (Nordst.) Gomont strains, M2 and Kenya, isolated from two different habitats, to acclimate to low temperature (15°C). Both strains had similar growth rates at 30°C, but once acclimated to low temperature, M2 showed a greater decline in growth (59% vs. 41% in the Kenya strain). We suggest that the Kenya strain acclimated better to low temperature by down‐regulating its photosynthetic activity through (i) decreasing antenna size and thus reducing energy flux into the photosystems; (ii) decreasing reaction center density (RC/CSX) and the performance index, thus decreasing the trapping probability and electron transport rate while maintaining electron transport probability for electron transport beyond QA? unchanged; (iii) increasing the energy dissipation flux. In contrast, the M2 strain showed no difference in antenna size and exhibited a much lower decrease in RC/CSX and a lower dissipation rate. Hence, the Kenya strain minimized potential damage on the acceptor side of PSII compared to the M2 cells. Furthermore, acclimation to low temperature was accompanied by an improved mechanism for handling excess energy resulting in an enhanced ability of the Kenya strain to rapidly repair damaged PSII RCs and withstand a high photon flux density (HPFD) stress; this finding might be defined as a cross‐adaptation phenomenon. This study may provide a tool to identify strains suitable for outdoor mass‐production in different regions characterized by different climate conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号