首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3166篇
  免费   254篇
  国内免费   555篇
  2023年   60篇
  2022年   59篇
  2021年   92篇
  2020年   88篇
  2019年   114篇
  2018年   90篇
  2017年   91篇
  2016年   120篇
  2015年   79篇
  2014年   101篇
  2013年   152篇
  2012年   90篇
  2011年   109篇
  2010年   84篇
  2009年   112篇
  2008年   130篇
  2007年   144篇
  2006年   162篇
  2005年   162篇
  2004年   125篇
  2003年   169篇
  2002年   124篇
  2001年   139篇
  2000年   99篇
  1999年   90篇
  1998年   71篇
  1997年   83篇
  1996年   81篇
  1995年   71篇
  1994年   81篇
  1993年   105篇
  1992年   72篇
  1991年   50篇
  1990年   85篇
  1989年   59篇
  1988年   63篇
  1987年   40篇
  1986年   36篇
  1985年   39篇
  1984年   39篇
  1983年   15篇
  1982年   55篇
  1981年   27篇
  1980年   22篇
  1979年   21篇
  1978年   10篇
  1977年   12篇
  1976年   17篇
  1975年   6篇
  1972年   8篇
排序方式: 共有3975条查询结果,搜索用时 31 毫秒
71.
Eight experimental ditch mesocosms were used to study the effect of eutrophication over four years. The experimental ditches had a sand or clay bottom. The ditches were treated with additions of phosphorus, phosphorus and nitrogen, or without additions (controls). Oligochaetes were sampled by deploying trays with substratum for colonization over twenty weeks. Both the important variables phosphorus, nitrogen and oxygen as well as the oligochaete species and numbers are presented. The effects of nutrient additions on phosphorus, nitrogen and oxygen concentrations were described together with changes in oligochaete species composition and numbers. The results were further analyzed by redundancy analysis (RDA). In the clay-lined ditches nutrient addition coincided with fluctuation in oxygen concentration. The higher the nutrient addition levels the longer the period of oxygen depletion became. During oxygen depletion the number of oligochaetes was strongly reduced or even became zero. The low nutrient status of the sandy bed in the sand-lined ditches slowed down the rate of colonization. Only a few tubificids were collected. Eutrophication effects were only observed at the highest nutrient addition level. Considerable variation is attributed to stochastic factors in the sand-lined ditches. Whether oligochaete species were present was related to the length of the colonization period. The substratum composition and food together with oxygen regime decided whether they become more or less abundant in ditches. Large-scale mesocosm experiments require time to develop. Only after the first colonization period variables of species presences and abundances can be employed to detect changes associated with eutrophication. Oligochaetes can be used to measure colonization as well as eutrophication processes.  相似文献   
72.
Uptake rate of calcium, potassium, nitrate-N and phosphorus were measured in a second order Mediterranean temporary stream, in February and March 1992. This study analyzed a period of continuous surface flow between two hydrologic disturbance events (flood and drought) of an annual hydrological cycle (1991–92).The lowest values of uptake length were recorded for nitrate-N in February 92 and calcium in March 92. Nitrate had the highest uptake rate in both release performances, and potassium showed the lowest uptake rate values. The increase of calcium and nitrate uptake rate between February 92 and March 92 suggested a higher ecosystem efficiency in nutrient retention with a higher temperature and light intensity and slower water velocity, discharge and water depth. These results obtained were similar to those reported in permanent streams, indicating that in periods of continuous surface flow (without extreme hydrologic disturbance), abiotic factors can influence nutrient retention in temporary streams.  相似文献   
73.
74.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   
75.
The purpose of this study was to determine the extent of aluminum (Al) accumulation in the human aorta and cerebral arteries. The Al contents in the aortae and in the cerebral arteries from 23 human subjects was determined by inductively coupled plasma atomic emission spectrophotometry (ICP-AES). The subjects' age range was 45–99-yr-old; 15 of the subjects were males and 8 were females. Al was detected in twelve aortae and in six cerebral arteries, when the entire specimen was analyzed. Two specimens where Al was found in the cerebral arteries contained no Al in the aorta. No relationship to the subject's sex was found. When related to age, two groups were established. Group L (45–75 yr old) and group H (>75 yr old), which exhibited aortal Al concentrations of 33.3 and 72.7%, respectively. When the aortic wall was dissected into the tunica intima, media, and adventitia, Al was found mainly in the tunica media. In the aorta, significant relationships were found between Al and phosphorus (P) levels (r=0.801,p<0.01) and between Al and calcium (Ca) (r=0.661,p<0.05). We have concluded that Al accumulation is age-dependent and that it occurs both in the aorta and in the cerebral artery. In the aorta, accumulation occurs mainly in the tunica media. Both P and Ca appear to enhance aortal Al accumulation.  相似文献   
76.
The areal distribution of organic C contents, 13C values, total N and P and biogenic Si contents in surficial sediments were used to study the distribution, origin and diagenetic transformations of sedimented biogenic debris in the eutrophic subalpine Lake Bled (Slovenia), which for most of the yearhas an anoxic hypolimnion. The influence of an allochthonous input, restricted to the western basin, was clearly traced by higher organic C and total N and P contents, higher 13C values, and higher sedimentation rate in comparison to the eastern basin. The low 13C values of sedimentary organic matter in the major part of the lake, lower than the 13C values of different types of organic matter, suggest that this sedimentary organic matter is most probably the product of a microbial community and not a residue of primary production.The temporal variation of benthic diffusive fluxes of NH4, Si and PO4, derived from modelling the pore water profiles, was related to sedimentation of phytoplanktonic blooms, while the PO4 fluxes were also dependent on changing redox conditions at the sediment-water interface in the period of the winter-spring overtum. The removal of PO4 in pore waters is probably due to the adsorption of phosphate and precipitation of apatite and vivianite. The budget of C, N and P at the sediment-water interface revealed a high recycling efficiency (>70%), also confirmed by the rather uniform (or only slightly decreasing) vertical profiles of organic C, total N and P in sediment cores and C/N and C/P ratios. The percentage of biogenic Si recycling is low (<10%), suggesting its removal in sediments.  相似文献   
77.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   
78.
To assess genotypic variability in nutrient supply of shoot branches, the distribution of 32P and 45Ca exported from a source nodal root (24-h uptake period) was measured within a genotype of a large-leaved (Kopu) and a small-leaved (Tahora) cultivar of Trifolium repens. Source-sink relationships of plants were modified by root severance, defoliation, and shade treatments. In control plants of both genotypes distribution of 32P and 45Ca closely followed the pathways that could be predicted from the known phyllotactic constraints on the vascular system. As such there was little allocation of radioisotopes (3.1% and 2.5% of exported 32P and 45Ca, respectively) from the source root to branches on the apposite side of the parent axis (far-side branches). However, genotypic differences in nutrient allocation were apparent, when treatments were imposed to alter intra-plant source-sink relationships. In the large-leaved genotype, the imposed treatments had minor effects on the allocation to far-side branches: whereas, in the small-leaved genotype, root severance and defoliation treatments increased lateral transport to far-side branches to 30% (32P) and 10% (45Ca) of exported radioisotopes. Genotypes with low (8–9) and high (12–13) numbers of vascular bundles were selected from within the large-leaved cultivar. Distribution of 32P was then measured after plants had been pre-treated by removal of all far-side roots two days prior to labelling. Genotypes with low vascular bundle number allocated 20% and those with high vascular bundle number 3.2% of exported 32P to far-side branches. It was concluded (1) that genotypic variation exists within T. repens for potential to alter intra-plant allocation of mineral nutrients, in response to treatments that modify source-sink relationships within plants; and (2) that this variation is correlated with differences among genotypes in the organisation of the vasculature of their stolons.  相似文献   
79.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
80.
M. A. Topa 《Plant and Soil》1996,182(2):259-265
Short-term 32P uptake experiments were conducted with intact seedlings of loblolly pine (Pinus taeda L.) to examine possible seed source variation in net accumulation of 32P in roots and shoots, and in rates of unidirectional influx. Seed source had a highly significant effect on biomass and P concentrations of shoots and roots. Seedlings from two seed sources representing fast-growing populations (a broadly-adapted and wet-site seed source) accumulated over 60% more total seedling P than smaller seedlings from a drought-hardy seed source, reflecting higher biomass and root P concentrations. Rates of unidirectional 32P influx in seedlings from the drought-hardy seed source were more than twice the rates of the seedlings from the broadly-adapted seed source. However, after 24 h in labeled uptake solution, net accumulation of 32P was similar, suggesting that rates of unidirectional efflux from roots of the drought-hardy seed source were also high. Although there were no significant differences in biomass and tissue P concentrations between the two fast-growing seed sources, rates of unidirectional influx in seedlings from the broadly-adapted seed source were 42% lower than rates in seedlings from the wet-site source. Yet, after 24 h in labeled uptake solution, net accumulation of 32P in seedlings from the broadly-adapted seed source was 50% higher. Unidirectional efflux out of the root may regulate net uptake of P as much, if not more, than influx in loblolly pine seedlings-at least under high-P growth conditions. The results in this study do not support previous studies with herbaceous plants suggesting that fast-growing species typically exhibit higher rates of nutrient uptake than slow-growing species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号