首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3858篇
  免费   331篇
  国内免费   671篇
  2023年   61篇
  2022年   75篇
  2021年   111篇
  2020年   107篇
  2019年   135篇
  2018年   130篇
  2017年   116篇
  2016年   127篇
  2015年   119篇
  2014年   139篇
  2013年   185篇
  2012年   133篇
  2011年   144篇
  2010年   123篇
  2009年   154篇
  2008年   191篇
  2007年   199篇
  2006年   207篇
  2005年   194篇
  2004年   151篇
  2003年   185篇
  2002年   139篇
  2001年   155篇
  2000年   130篇
  1999年   112篇
  1998年   78篇
  1997年   89篇
  1996年   102篇
  1995年   82篇
  1994年   86篇
  1993年   107篇
  1992年   79篇
  1991年   63篇
  1990年   83篇
  1989年   62篇
  1988年   66篇
  1987年   41篇
  1986年   39篇
  1985年   44篇
  1984年   60篇
  1983年   26篇
  1982年   65篇
  1981年   27篇
  1980年   26篇
  1979年   27篇
  1978年   20篇
  1977年   15篇
  1976年   14篇
  1975年   8篇
  1973年   11篇
排序方式: 共有4860条查询结果,搜索用时 515 毫秒
21.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
22.
Application of phosphorus at 40, 60, 80 and 100 kg P2O5 ha–1 in the presence of a uniform dressing of nitrogen (N) and potash (K2O) each applied at 20 and 24 kg ha–1 to chickpea (CM-88) grown in sandy loam soil in a replicated field experiment improved the nodulation response of the crop, increased its grain yield (ka ha–1) by 18, 59, 40 and 14 percent, biomass yield (ka ha–1) by 32, 32, 54 and 14 percent, biomass N (kg ha–1) by 31, 48, 49, 19 percent, and biomass P (kg ha–1) by 26, 40, 41 and 11 percent, respectively. The effect of phosphorus on the nitrogenase activity of the excised roots of chickpea was, however, inconsistent.  相似文献   
23.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   
24.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   
25.
Benthic algal biomass and productivity in high subarctic streams,Alaska   总被引:2,自引:2,他引:0  
Year-round measurements of the standing crop of epilithic algae (as chlorophyll a concentration) in two streams — one second and one fourth order (map scale 1:63 360) — in interior Alaska (64°–65° N) were only about one tenth that reported from streams of temperate North America. Cell densities in these streams, however, were similar to those in comparable temperate streams. Year-round domination of the benthic flora by very tiny diatoms (Achnanthes spp.) may explain the apparent disparity between low chlorophyll a content and nearly average cell densities. Chlorophyll a standing crop in a more alkaline groundwater-fed stream, however, was higher and within the range of similarly sized temperate streams. Maximum chlorophyll a standing crop varied positively with alkalinity in 5 clear-water streams where standing crop was measured on natural or artificial substrates. Seasonal mean concentrations of sestonic chlorophyll a (used as estimates of benthic algal chlorophyll a standing crop) varied directly and significantly with alkalinity among ten clear-water streams; and, with total phosphorus among 8 of 10 clear-water and 5 brown-water streams studied. During the summer, when there is little darkness, gross primary productivity (as estimated by the diurnal dissolved-oxygen method) was similar to that of northern temperate streams. Gross primary productivity was also seen to vary directly with alkalinity in 5 clear-water streams of this region.U.S. Fish and Wildlife Service  相似文献   
26.
The predicted conformation and position of the central transforming region (residues 55–67) of the p21 protein are compared with the conformation and position of this segment in a recently determined X-ray crystal structure of residues 1–166 of this protein in the activated state bound to a nonhydrolyzable GTP derivative. We previously predicted that this segment of the protein would adopt a roughly extended conformation from Ile 55-Thr 58, a reverse turn at Ala 59-Gln 61, followed by an -helix from Glu 62-Met 67. We further predicted that this region of the activated protein occupies a position that is virtually identical to corresponding regions in the homologous purine nucleotide-binding proteins, bacterial elongation factor (EF-tu), and adenylate kinase (ADK). We find that there is a close correspondence between the conformation and position of our predicted structure and those found in the X-ray crystal structure. A mechanism for activation of the protein is proposed and is corroborated by X-ray crystallographic data.  相似文献   
27.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   
28.
Mineralization of N and P along a trophic gradient in a freshwater mire   总被引:3,自引:0,他引:3  
Release of inorganic nitrogen and phosphorus in the soil of a peatland (fen) in The Netherlands was measured by means of an in situ incubation technique. Three sampling stations were chosen along a gradient in the plant productivity and water chemistry of the fen. The station with the highest biomass production was located near the ditch that supplied the fen with water in amounts matching water losses through evaporation and downward percolation to the groundwater. Water chemistry at this station strongly resembled that of the ditch water. The two stations remote from the ditch had much lower plant biomass, and significantly lower pH, conductivity, and calcium and bicarbonate concentrations. The vegetation at these two stations was characterized by a thick Sphagnum carpet.The release of inorganic N and P was much faster at the two stations remote from the ditch than at that located near the ditch. The differences in mineralization rate are probably due to the differences in water chemistry; phosphates are more soluble at low than at high pH. The fast N mineralization at stations with a thick Sphagnum carpet may be related to the chemical composition of Sphagnum litter. The difference in productivity is not explained by the N and P mineralization rates. Direct supply of N and P from the ditch are probably the main cause of the high productivity at the station bordering the ditch.  相似文献   
29.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
30.
Soon  Y. K. 《Plant and Soil》1988,109(2):171-179
A field study with barley was conducted in 1984 and 1985 to provide data on uptake rates of N, P, K and Mg and their variation as the growing season progressed. Two varieties were grown: Galt in 1984 and Otal in 1985. Soil fertility was maintained at or near optimum conditions. Samples were obtained approximately every 10 days for shoot dry weight, nutrient content and root length measurements. The approximate method (Williams, 1948) traditionally used for calculating uptake rates was found to be invalid for most of the nutrients studied. The method used for measuring uptake rates was the functional approach proposed by Hunt (1973). Inflow,i.e. uptake rate per unit root length, of plant nutrients, decreased with time. However, maximum uptake rates measured in kg ha–1d–1 occurred at about 50 days from sowing because of increasing root length density with time. Inflow or uptake rates were low in 1985 because of moisture deficiency, and grain yield (0.89 t ha–1) was severely depressed. This study demonstrated that Hunt's method is superior and more advantageous than the traditional, approximate method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号