首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   10篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   9篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   10篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有177条查询结果,搜索用时 140 毫秒
11.
Rhizomelic chondrodysplasia punctata (RCDP) is a lethal autosomal recessive disease correspondingto complementation group 11 (CG 11), the second most common of the thirteen CGs of peroxisomalbiogenesis disorders (PBDs). RCDP is characterized by proximal limb shortening, severely disturbedendochondrial bone formation, and mental retardation, but there is an absence of the neuronal migrationdefect found in the other PBDs. Plasmalogen biosynthesis and phytanic acid oxidation are deficient, butvery long chain fatty acid (VLCFA) oxidation is normal. At the cellular level, RCDP is unique in thatthe biogenesis of most peroxisomal proteins is normal, but a specific subset of at least four, and maybemore, peroxisomal matrix proteins fail to be imported from the cytosol. In this review, we discuss recentadvances in understanding RCDP, most prominently the cloning of the affected gene, PEX7,and identification of PEX7 mutations in RCDP patients. Human PEX7 wasidentified by virtue of its sequence similarity to its Saccharomyces cerevisiae ortholog, whichhad previously been shown to encode Pex7p, an import receptor for type 2 peroxisomal targetingsequences (PTS2). Normal human PEX7 expression rescues the cellular defects in culturedRCDP cells, and cDNA sequence analysis has identified a variety of PEX7 mutations in RCDP patients,including a deletion of 100 nucleotides, probably due to a splice site mutation, and a prevalent nonsensemutation which results in loss of the carboxyterminal 32 amino acids. Identification of RCDP as a PTS2import disorder explains the observation that several, but not all, peroxisomal matrix proteins aremistargeted in this disease; three of the four proteins deficient in RCDP have now been shown to bePTS2-targeted.  相似文献   
12.
Refsum's disease (hereditary motor sensory neuropathy type IV, heredopathia atactica polyneuritiformis) is an autosomal recessive disorder the clinical features of which include retinitis pigmentosa, blindness, anosmia, deafness, sensory neuropathy, ataxia and accumulation of phytanic acid in plasma- and lipid-containing tissues. The transport and biochemical pathways of phytanic acid metabolism have recently been defined with the cloning of two key enzymes, phytanoyl-CoA 2-hydroxylase (PAHX) and 2-hydroxyphytanoyl-CoA lyase, together with the confirmation of their localization in peroxisomes. PAHX, an iron(II) and 2-oxoglutarate-dependent oxygenase is located on chromosome 10p13. Mutant forms of PAHX have been shown to be responsible for some, but not all, cases of Refsum's disease. Certain cases have been shown to be atypical mild variants of rhizomelic chondrodysplasia punctata type 1a. Other atypical cases with low-plasma phytanic acid may be caused by alpha-methylacyl-CoA racemase deficiency. A sterol-carrier protein-2 (SCP-2) knockout mouse model shares a similar clinical phenotype to Refsum's disease, but no mutations in SCP-2 have been described to-date in man. This review describes the clinical, biochemical and metabolic features of Refsum's disease and shows how the biochemistry of the alpha-oxidation pathway may be linked to the regulation of metabolic pathways controlled by isoprenoid lipids, involving calcineurin or the peroxisomal proliferator activating alpha-receptor.  相似文献   
13.
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH. The latter pathway can only be operational if peroxisomes contain 4,8-dimethylnonanoyl-CoA thioesterase activity. In this paper we show that rat liver peroxisomes indeed contain 4,8-dimethylnonanoyl-CoA thioesterase activity. We have partially purified the enzyme involved from peroxisomes and identified the protein as the rat ortholog of a known human thioesterase using MALDI-TOF mass spectrometry in combination with the rat EST database. Heterologous expression studies in Escherichia coli established that the enzyme hydrolyzes not only DMN-CoA but also other branched-chain acyl-CoAs as well as straight-chain acyl-CoA-esters. Our data provide convincing evidence for the existence of the second pathway of acyl-CoA transport from peroxisomes to mitochondria by hydrolysis of the CoA-ester in peroxisomes followed by transport of the free acid to mitochondria, reactivation to its CoA-ester, and oxidation to CO(2) and H(2)O. (c)2002 Elsevier Science.  相似文献   
14.
Peroxisome ghosts are aberrant peroxisomal structures found in cultured skin fibroblasts from patients affected by Zellweger Syndrome (ZS), a genetic disorder of peroxisomal assembly. They contain peroxisomal integral membrane proteins (PxIMPs) and they lack most of the matrix enzymes that should be inside the organelle (Santos et al., Science 239 (1988) 1536-1538). Considerable evidence indicates that these ghosts result from genetic defects in the cellular machinery for importing newly-synthesized peroxisomal proteins into the organelle. In contrast to these observations, (Heikoop et al., Eur. J. Cell Biol. 57 (1992) 165-171) report that in Zellweger Syndrome, peroxisomal membranes are located within lysosomes and/or contain lysosomal enzymes. We have undertaken a more detailed and systematic investigation of this matter, employing confocal laser scanning microscopy (CLSM). In fibroblasts derived from ZS patients belonging to different complementation groups, peroxisomes were labeled with antibodies against PxIMPs and lysosomes were labeled with an antibody against a lysosome associated membrane protein (LAMP-2) or with LysoTracker. The results unambiguously demonstrated no appreciable colocalization of PxIMPs and LAMPs (or LysoTracker), indicating that peroxisomal ghosts are distinct subcellular structures, occupying separate subcellular locations.  相似文献   
15.
16.
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.  相似文献   
17.
The specific activity of catalase purified from the peroxisomes of sunflower cotyledons declines in parallel with the total cotyledonary catalase activity during the transition of peroxisomes from glyoxysomal to leaf peroxisomal function. The hematin content of the purified catalase however, remains constant at 4 hematin groups per catalase molecule. The absorbance coefficients of catalase at 404 and 280 nm were determined to be 372 and 540/mM/cm, respectively.  相似文献   
18.
Transport of polypeptides across membranes is a general and essential process in every cell. This process is utilized by molecular machines composed of soluble and membrane-inserted proteins. At least one component of the molecular transport machines present in different membranes contains a subunit with a domain composed of 3 tetratricopeptide repeat (TPR) motifs. These domains are important for protein-protein interaction, for example, recognition of chaperones. To understand the evolution of these TPR domain-containing receptors involved in protein translocation, we inferred their phylogenetic relationships. We show that the evolutionary rate of these TPR domains is reduced when compared with the remaining sequence. The reduction is explained by the interaction of the TPR domains with their substrates. Based on the TPR tree, we propose that Sec72 recognizes Hsp70 and that Tom34 recognizes Hsp90. The phylogeny can further be used to assign the localization of the Toc64 isoforms to mitochondria or chloroplasts. Our findings are discussed in the context of the evolutionary development of translocation systems with focus on the occurrence of Hsp70/Hsp90-recognizing TPR domains in these machineries.  相似文献   
19.
Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules.Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes.Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.  相似文献   
20.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号