首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11723篇
  免费   778篇
  国内免费   377篇
  2024年   20篇
  2023年   180篇
  2022年   154篇
  2021年   423篇
  2020年   519篇
  2019年   704篇
  2018年   410篇
  2017年   276篇
  2016年   302篇
  2015年   335篇
  2014年   667篇
  2013年   840篇
  2012年   592篇
  2011年   731篇
  2010年   530篇
  2009年   520篇
  2008年   540篇
  2007年   568篇
  2006年   520篇
  2005年   508篇
  2004年   485篇
  2003年   409篇
  2002年   389篇
  2001年   254篇
  2000年   229篇
  1999年   224篇
  1998年   163篇
  1997年   137篇
  1996年   127篇
  1995年   93篇
  1994年   112篇
  1993年   88篇
  1992年   66篇
  1991年   63篇
  1990年   53篇
  1989年   40篇
  1988年   47篇
  1987年   45篇
  1986年   26篇
  1985年   50篇
  1984年   73篇
  1983年   50篇
  1982年   54篇
  1981年   35篇
  1980年   55篇
  1979年   43篇
  1978年   25篇
  1977年   25篇
  1976年   22篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
12.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
13.
Recently, circular RNAs (circRNAs) are identified as a novel class of noncoding RNAs playing important roles in human malignant tumors. However, the regulatory function of circRNA in lung adenocarcinoma (LUAD) is still largely unknown. Present study aimed to explore the role of circ_0006427 in LUAD progression. Firstly, the downregulation of circ_0006427 in LUAD tissues and cell lines was revealed by microarray analysis and qRT-PCR analysis. And we also confirmed the circ_0006427 as a prognostic target in LUAD patients. Functionally, overexpression of circ_0006427 effectively suppressed cell proliferation, migration and invasion. Mechanistically, circ_0006427 was found to be predominantly located in the cytoplasm of LUCA cell, and was further revealed to positively regulate DKK1 in LUAD by sponging miR-6783–3p. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and western blot analysis revealed that circ_0006427 inactivated Wnt/β-catenin signaling pathway by upregulating DKK1. At last, rescue assays proved the function of circ_0006427/miR-6783–3p/DKK1 axis in LUAD progression. In conclusion, our study revealed that circ_0006427 suppressed lung adenocarcinoma progression through regulating miR-6783–3p/DKK1 axis.  相似文献   
14.
The leaves of Strychnos wallichiana Steud. ex. DC. from Bangladesh contain icajine and novacine as their major alkaloids. Smaller amounts of strychnine, brucine, pseudostrychnine, pseudobrucine, N-methyl-sec.-pseudo-β-colubrine, 14-hydroxyicajine, strychnine N-oxide, and brucine N-oxide are also present. The new bases 14 hydroxynovacine and icajine N-oxide have been isolated.  相似文献   
15.
《Molecular cell》2020,77(2):228-240.e7
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   
16.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   
17.
18.
Genistein (GEN) has been previously shown to have a proapoptotic effect on cancer cells through a p53-dependent pathway, the mechanism of which remains unclear. One of its intracellular targets, APE1, protects against apoptosis under genotoxic stress and interacts with p53. In this current study, we explored the mechanism of the proapoptotic effect of GEN by examining the APE1–p53 protein–protein interaction. We initially showed that the p53 protein level was elevated in GEN-treated human non-small lung cancer A549 cells and cervical cancer HeLa cells. By examining both protein synthesis and degradation, we found that GEN enhances p53 intracellular stability by interfering with the interaction of APE1 and p53, which provided a plausible explanation for how GEN initiates apoptosis. Furthermore, we found that the interaction between APE1 and p53 is important for the degradation of p53 and is dependent on the redox domain of APE1 by utilizing the redox domain mutant APE1 C65A. Our data suggest that the degradation of wild-type p53 is blocked when the redox domain of APE1 is masked or interrupted. Based on this evidence, we hereby report a novel mechanism of p53 degradation through an APE1-mediated, redox-dependent pathway.  相似文献   
19.
《Developmental cell》2022,57(2):212-227.e8
  1. Download : Download high-res image (115KB)
  2. Download : Download full-size image
  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号