首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13354篇
  免费   897篇
  国内免费   713篇
  2024年   27篇
  2023年   165篇
  2022年   181篇
  2021年   296篇
  2020年   408篇
  2019年   492篇
  2018年   489篇
  2017年   392篇
  2016年   377篇
  2015年   423篇
  2014年   747篇
  2013年   1297篇
  2012年   461篇
  2011年   749篇
  2010年   422篇
  2009年   647篇
  2008年   680篇
  2007年   748篇
  2006年   603篇
  2005年   597篇
  2004年   492篇
  2003年   482篇
  2002年   391篇
  2001年   296篇
  2000年   228篇
  1999年   213篇
  1998年   227篇
  1997年   210篇
  1996年   174篇
  1995年   188篇
  1994年   168篇
  1993年   184篇
  1992年   185篇
  1991年   140篇
  1990年   108篇
  1989年   132篇
  1988年   105篇
  1987年   94篇
  1986年   73篇
  1985年   102篇
  1984年   110篇
  1983年   63篇
  1982年   86篇
  1981年   61篇
  1980年   47篇
  1979年   51篇
  1978年   41篇
  1977年   32篇
  1976年   26篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
61.
The low gas permeability of a diffusion barrier in the cortex of soybean nodules plays a significant role in the protection of nitrogenase from oxygen inactivation. It may also set an upper limit on nodule respiration and nitrogen fixation rates. Two methods which have been used to quantify the gas permeability of leguminous nodules are reviewed and found to be unreliable. A new assay technique for determining both the nodule activity and gas permeability is developed and tested. This ‘lag-phase’ assay is based on the time nodules require to reach steady-state ethylene production after being exposed to acetylene. The technique is rapid, insensitive to errors in biochemical parameters associated with nitrogenase, and is non-destructive. The method was tested with intact aeroponically grown soybean plants for which the mean nodule gas permeability was found to be 13.3×10−3 mms−1. This corresponds to a layer of cells approximately 35 um thick and is consistent with previously reported values.  相似文献   
62.
While diurnal cycles in nitrogen fixation rates are sometimes assumed to result from diurnal variation in photosynthetically active radiation, contradicting evidence exists that indicate soil temperature is the primary environmental influence. These studies assessed the significance of temperature on soybean nitrogen fixation under field conditions. Two groups of intact field-grown soybean plants, one at ambient and the other exposed to a 10°C diurnal variation in soil temperature, were nondestructively assayed for acetylene reduction rates. Activity was closely associated with soil temperature (R2=0.85), even when temperature was 12 h out of phase with ambient. Data were also obtained to determine if the effects of rhizosphere temperature on nitrogen fixation are mediated through an effect on the nodule oxygen permeability. Nodule oxygen permeability of intact, aeroponically grown soybean was closely correlated with the diurnal changes in temperature (R2=0.90).  相似文献   
63.
Rat parotid gland acinar cells stimulated to divide by a chronic regimen of isoproterenol demonstrate a dramatic increase in the synthesis of the glycosyltransferase 4β-galactosyltransferase. A plasma membrane localization for much of the increase in 4β-galactosyltransferase was determined by density gradient membrane fractionation. Golgi-enriched fractions showed no increase in specific activity, while plasma membrane activity increased 40-fold. This selective increase at the cell surface was confirmed by immunofluorescence of intact, nonpermeabilized cells from treated glands, using a monospecific antibody prepared against the purified bovine milk transferase. In detergent-permeabilized cells staining of nontreated cells was seen only as groups of perinuclear vesicles, presumed to be Golgi apparatus. In isoproterenol-treated and permcabilized cells both presumptive Golgi and cell surface staining was apparent. Enzyme assays performed on intact cells established that the enzyme's active site was oriented to the exterior of the cells. The transferase could be detected as early as 3 hr after the primary challenge with isoproterenol. Pretrcatment of rats with cycloheximide prevented its appearance.  相似文献   
64.
The motility status of Xenopus laevis spermatozoa does not affect their respiration rate. Oxygen consumption for 109 spermatozoa is approximately 0.4 μmol/minute. Oxygen consumption is not increased by gramicidin D, an uncoupler, and it is not blocked by KCN or NaN3. The adenosine triphosphate (ATP) content of spermatozoa that have been activated is definitely less than that in the spermatozoa that remained immotile. Incubation in KCN, NaN3, and gramicidin decreases the ATP content and impairs motility. The conclusions of the present study are that in Xenopus spermatozoa motility and oxygen consumption are not correlated, and the composition of the respiratory chain of these spermatozoa presents noteworthy peculiarities.  相似文献   
65.
It has been suggested that oxygen free radicals (OFR) depress the excitation-contraction coupling in cardiac muscle. It is possible that a decrease in the cardiac contractility in the failing heart may be due to an increased OFR producing activity of polymorphonuclear (PMN) leukocytes. We studied the OFR producing activity (chemiluminescence) of PMN leukocytes from blood in dogs with heart failure due to chronic volume overload. The animals were divided into two groups: I) normal, (n = 10): II) dogs with mitral insufficiency (MI) of 6 to 9 months duration, (n = 10). Hemodynamic studies were done to establish the presence of heart failure. Blood samples were collected to measure PMN leukocyte chemiluminescence. There was a decrease in the cardiac index and index of myocardial contractility (dp/dt/IIP) and an increase in the left ventricular end-diastolic pressure in dogs with MI indicating left ventricular failure. The peak chemiluminescent activity of the PMN leukocytes in blood of dogs with failure was about four folds greater than that in the blood from normal dogs. These results suggest that there may be an increased OFR generation in dogs with volume overload heart failure. The decrease in the myocardial contractility in the failing heart might be due to an increase in the OFR produced by the PMN leukocytes.  相似文献   
66.
Purification and characterization of microsomal glutathione S-transferase produced by Aspergillus ochraceus TS are reported. The isozymes are located in microsomes and were active against 1-chloro-2,4-dinitrobenzene, ethacrynic acid, 1,2-dichloro-4-nitrobenzene, trans-4- phenyl-3-buten-2-one,p-nitrobenzyl chloride and bromosulphophthalein. They were inhibited by N-ethylmaleimide and bromosulphophthalein. The GST isozymes produced by Aspergillus ochraceus TS are indistinguishable in respect of their molecular mass both in native and denatured state. The subunit of the purified protein had an apparent Mr of 11 kDa while molecular mass of the native protein is around 56 kDa. The substrate specificity and pl values of the isozymes were different. The GSTs produced by Aspergillus ochraceus TS fairly share functional properties with mammalian cytosolic isozymes.  相似文献   
67.
The purpose of this study was to explore the role of singlet oxygen in cardiovascular injury. To accomplish this objective, we investigated the effect of singlet oxygen [generated from photoactivation of rose-bengal] on the calcium transport and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum and compared these results with those obtained by superoxide radical, hydrogen peroxide and hydroxyl radical. Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at (560 nm) produced a significant inhibition of Ca 2+ uptake; from 2.27 ± 0.05 to 0.62 ± 0.05 µmol Ca+/mg.min (mean ± SE) (P < 0.01) and Ca2+-ATPase activity from 2.08 ± 0.05 µmol Pi/min. mg to 0.28 ± 0.04 µmol Pi/min. mg (mean ± SE) (P < 0.01). The inhibition of calcium uptake and Ca2+-ATPase activity by rose bengal derived activatedoxygen (singlet oxygen) was dependent on the duration of exposure and intensity of light. The singlet oxygen scavengers ascorbic acid and histidine significantly protected SR Ca2+-ATPase against rose bengal derived activated oxygen species but superoxide dismutase and catalase did not attenuate the inhibition. SDS-polyacrylamide gel electrophoresis of SR exposed to photoactivated rose bengal up to 14 min, demonstrated complete loss of Ca2+-ATPase monomer band which was significantly protected by histidine. Irradiation of rose bengal also caused an 18% loss of total sulfhydryl groups of SR. On the other hand, superoxide (generated from xanthine oxidase action on xanthine) and hydroxyl radical (0.5 mM H2O2 + Fe2+ -EDTA) as well as H2O2 (12 mM) were without any effect on the 97,000 dalton Ca2+-ATPase band ofsarcoplasmic reticulum. The results suggest that oxidative damage of cardiac sarcoplasmic reticulum may be mediated by singlet oxygen. This may represent an important mechanism by which the oxidative injury to the myocardium induces both a loss of tension development and arrhythmogenesis.  相似文献   
68.
The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake (VO2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The VO2max increased significantly by 12% (P less than 0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to exhaustion at 80% of normoxic VO2max was 41% longer in HOX than in NOX (P less than 0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation (VE) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpl) increased initially by 3.5 mmol.l-1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, VE was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.  相似文献   
69.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   
70.
This overview presents data showing that glucose use increases and that excitatory amino acids (i.e., glutamate, aspartate), taurine and ascorbate increase in the extracellular fluid during seizures. During the cellular hyperactive state taurine appears to serve as an osmoregulator and ascorbate may serve as either an antioxidant or as a pro-oxidant. Finally, a unifying hypothesis is given for seizure-induced brain damage. This unifying hypothesis states that during seizures there is a release of excitatory amino acids which act on glutamatergic receptors, increasing neuronal activity and thereby increasing glucose use. This hyperactivity of cells causes an influx, of calcium (i.e. calcium stress) and water movements (i.e., osmotic stress) into the cells that culminate in brain damage mediated by reactive oxygen species.Special issue dedicated to Dr. Frederick E. Samson  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号