首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   35篇
  国内免费   7篇
  2024年   4篇
  2023年   8篇
  2022年   6篇
  2021年   34篇
  2020年   34篇
  2019年   74篇
  2018年   29篇
  2017年   14篇
  2016年   6篇
  2015年   11篇
  2014年   18篇
  2013年   17篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有324条查询结果,搜索用时 31 毫秒
71.
We provide the first biochemical evidence of a direct interaction between the glutathione transferase P1-1 (GSTP1-1) and the TRAF domain of TNF receptor-associated factor 2 (TRAF2), and describe how ligand binding modulates such an equilibrium. The dissociation constant of the heterocomplex is Kd=0.3 μM; however the binding affinity strongly decreases when the active site of GSTP1-1 is occupied by the substrate GSH (Kd≥2.6 μM) or is inactivated by oxidation (Kd=1.7 μM). This indicates that GSTP1-1''s TRAF2-binding region involves the GSH-binding site. The GSTP1-1 inhibitor NBDHEX further decreases the complex''s binding affinity, as compared with when GSH is the only ligand; this suggests that the hydrophobic portion of the GSTP1-1 active site also contributes to the interaction. We therefore hypothesize that TRAF2 binding inactivates GSTP1-1; however, analysis of the data, using a model taking into account the dimeric nature of GSTP1-1, suggests that GSTP1-1 engages only one subunit in the complex, whereas the second subunit maintains the catalytic activity or binds to other proteins. We also analyzed GSTP1-1''s association with TRAF2 at the cellular level. The TRAF2–GSTP1-1 complex was constitutively present in U-2OS cells, but strongly decreased in S, G2 and M phases. Thus the interaction appears regulated in a cell cycle-dependent manner. The variations in the levels of individual proteins seem too limited to explain the complex''s drastic decline observed in cells progressing from the G0/G1 to the S–G2–M phases. Moreover, GSH''s intracellular content was so high that it always saturated GSTP1-1. Interestingly, the addition of NBDHEX maintains the TRAF2–GSTP1-1 complex at low levels, thus causing a prolonged cell cycle arrest in the G2/M phase. Overall, these findings suggest that a reversible sequestration of TRAF2 into the complex may be crucial for cell cycle progression and that multiple factors are involved in the fine-tuning of this interaction.  相似文献   
72.
73.
Background: The research of G protein-coupled receptors (GPCRs) is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can inhibit proliferation and induce apoptosis in cancer cells. JTC-801 is a novel GPCR antagonist with the function of reversing pain and anxiety symptoms. This study aims to investigate the antitumor effects of JTC-801 on human osteosarcoma cells (U2OS) and elucidate the underlying mechanism.

Materials and methods: The Cell Counting Kit-8 assay was used to detect the viability of U2OS cells treated with JTC-801 in vitro. The cell apoptosis was evaluated using a flow cytometry assay with Annexin V-FITC/PI double staining. The inhibitory effect of JTC-801 on invasion and migration of U2OS cells were determined by the Transwell assays. Western blot assay was performed to measure the levels of proteins related to cell apoptosis and its mechanism.

Results: The JTC-801 significantly decreased the viability of U2OS cells (p?p?p?Conclusions: JTC-801 may exert osteosarcoma cell growth inhibition by promoting cell apoptosis, through PI3K/AKT signaling pathway participation.  相似文献   
74.
75.

Objectives

Low level laser therapy (LLLT), which stimulates natural biological processes in the application region, is frequently used in dental treatments. The aim of our study was to evaluate the effects of LLLT which could activate precancerous cells or increase existing cancerous tissue in case of clinically undetectable situations.

Materials and methods

Saos‐2 osteoblast‐like osteosarcoma cells and A549 human lung carcinoma cells were used. Twenty‐four hours after preparation of cell culture plates, laser irradiation was performed 1, 2 and 3 times according to the test groups using Nd:YAG laser with the power output 0.5, 1, 2 and 3 W. Cell proliferation analysis was performed by MTT assay at the 24th hour following the last laser applications.

Results

Generally, it was observed that the proliferation rates increased as the number of applications increased, when compared to the controls, especially in those cases in which the irradiation was performed 2 or 3 times more.

Conclusion

The findings of this study have led to the conclusion that LLLT increases cancer cell proliferation, depending on the power output level of the laser and the number of applications. In addition to the proliferation and mitotic activity of the cancer tissue cells, we concluded that LLLT, which is frequently used in dental practice, could activate precancerous cells or increase existing cancerous tissue.
  相似文献   
76.
77.
Osteosarcoma (OS) is identified as an aggressive malignancy of the skeletal system and normally occurs among young people. It is well accepted that microRNAs are implicated in biological activities of diverse tumors. Although miR-522 has been proved to elicit oncogenic properties in a wide range of human cancers, the physiological function and latent mechanism of miR-522 in OS tumorigenesis remain largely to be probed. In the current study, we certified that miR-522 was highly expressed in OS cells and presented carcinogenic function by contributing to cell proliferation, migration, and EMT progression whereas dampening cell apoptosis. In addition, miR-522 provoked TGF-β/Smad pathway through targeting PPM1A. Finally, the results of mechanism experiments elucidated that miR-522 stimulated TGF-β/Smad pathway to induce the development of OS via targeting PPM1A, which exposed that miR-522 may become a promising curative target for OS patients.  相似文献   
78.
Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.  相似文献   
79.
Sendai virus strain Tianjin, a novel genotype of Sendai virus, has been proven to possess potent antitumor effect on certain cancer cell types although inactivated by ultraviolet (UV). This study was carried out to investigate the in vitro anticancer properties of UV-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human osteosarcoma cells and the underlying molecular mechanism. Our studies demonstrated UV-Tianjin significantly inhibited the viability of human osteosarcoma cell lines and triggered apoptosis through activation of both extrinsic and intrinsic pathways in MG-63 cells. Meanwhile, autophagy occurred in UV-Tianjin-treated cells. Blockade of autophagy with 3-methyladenine remarkably attenuated the inhibition of cell proliferation by UV-Tianjin, suggesting that UV-Tianjin-induced autophagy may be contributing to cell death. Furthermore, UV-Tianjin induced reactive oxygen species (ROS) production, which was involved in the execution of MG-63 cell apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-L-cysteine, a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of apoptosis promoted autophagy, whereas suppression of autophagy attenuated apoptosis. Our results suggest that UV-Tianjin triggers apoptosis and autophagic cell death via generation of the ROS in MG-63 cells, which might provide important insights into the effectiveness of novel strategies for osteosarcoma therapy.  相似文献   
80.
Osteosarcoma is the most common primary malignant bone tumor and affects a significant portion of pediatric oncology patients. Although surgery and adjuvant chemotherapy confer significant survival benefits, many patients go on to develop metastatic disease, particularly to the lungs, secondary to development of drug resistance. Inhibition of protein phosphatase 2A with the small molecule, LB100, has demonstrated potent chemo- and radio-sensitizing properties in numerous pre-clinical tumor models. In this study, we showed that LB100 overcame DNA repair mechanisms in osteosarcoma cells treated with cisplatin, in vitro, and recapitulated these findings in an in vivo xenograft model. Notably, the addition of LB100 to cisplatin prevented development of pulmonary metastases in the majority of treated animals. Our data indicated the mechanism of chemo-sensitization by LB100 involved abrogation of the ATM/ATR-activated DNA damage response, leading to hyperphosphorylation of Chk proteins and persistent cyclin activity. In addition, LB100 exposure suppressed Akt signaling, leading to Mdm2-mediated proteasomal degradation of functional p53. Taken together, LB100 prevented repair of cisplatin-induced DNA damage, resulting in mitotic catastrophe and cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号