首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   10篇
  国内免费   17篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   10篇
  2013年   22篇
  2012年   11篇
  2011年   13篇
  2010年   12篇
  2009年   19篇
  2008年   23篇
  2007年   20篇
  2006年   32篇
  2005年   30篇
  2004年   39篇
  2003年   30篇
  2002年   43篇
  2001年   36篇
  2000年   31篇
  1999年   25篇
  1998年   17篇
  1997年   28篇
  1996年   19篇
  1995年   18篇
  1994年   14篇
  1993年   23篇
  1992年   19篇
  1991年   17篇
  1990年   6篇
  1989年   20篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   13篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有697条查询结果,搜索用时 31 毫秒
691.
This study was initiated to regenerate t Anthurium adventitious shoots, singly or in loose aggregates, by culturing homogenised inoculum in liquid or on the medium surface supported by a raft. The culture methods as compared to solid culture did not affect the time required for inoculum to regenerate. The regeneration rate was affected mainly by inoculum size, and it also influenced the regeneration frequency. All regenerated shoots were normal, without any sign of hyperhydricity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
692.
A recent convergence of technological innovations has re‐energized the ability to apply genetics to research in human craniofacial development. Next‐generation exome and whole genome sequencing have significantly dropped in price, making it relatively trivial to sequence and analyze patients and families with congenital craniofacial anomalies. A concurrent revolution in genome editing with the use of the CRISPR‐Cas9 system enables the rapid generation of animal models, including mouse, which can precisely recapitulate human variants. Here, we summarize the choices currently available to the research community. We illustrate this approach with the study of a family with a novel craniofacial syndrome with dominant inheritance pattern. The genomic analysis suggested a causal variant in AMOTL1 which we modeled in mice. We also made a novel deletion allele of Amotl1. Our results indicate that Amotl1 is not required in the mouse for survival to weaning. Mice carrying the variant identified in the human sequencing studies, however, do not survive to weaning in normal ratios. The cause of death is not understood for these mice complicating our conclusions about the pathogenicity in the index patient. Thus, we highlight some of the powerful opportunities and confounding factors confronting current craniofacial genetic research.  相似文献   
693.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   
694.
Summary Direct gene transfer into peanut intact embryonic leaflets was performed through electroporation. In transient β-glucuronidase expression assays, maximal expression was obtained by using pulses of 625 V cm−1 in EPRm (modified electroporation) buffer supplemented with 75 μM NaCl. Kanamycin-resistant plants were obtained, and the presence of the nptII gene was demonstrated by PCR analysis. The positive effect of electroporation on the efficiency of in vitro regeneration was demonstrated. Explants submitted to field strengths between 500 and 625 V cm−1 displayed a significantly increased number of shoots and originated faster growing calluses relative to control explants. Whereas in control explants callus formation occurred only at the petiolule, electroporated leaflets developed additional organogenic calluses on the foliar lamina. These authors have contributed equally to this work.  相似文献   
695.
696.
《Cell》2023,186(18):3776-3792.e16
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   
697.
Mouse sperm-associated antigen 6 like (SPAG6L) is an axoneme central apparatus protein, essential for the normal function of the ependymal cell and lung cilia, and sperm flagella. Accumulated evidence has disclosed multiple biological functions of SPAG6L, including ciliary/flagellar biogenesis and polarization, neurogenesis, and neuronal migration. Conventional Spag6l knockout mice died of hydrocephalus, which impedes further investigation of the function of the gene in vivo. To overcome the limitation of the short lifespan of conventional knockout mice, we developed a conditional allele by inserting two loxP sites in the genome flanking exon 3 of the Spag6l gene. By crossing the floxed Spag6l mice to a Hrpt-Cre line which expresses Cre recombinase ubiquitously in vivo, mutant mice that are missing SPAG6L globally were obtained. Homozygous mutant Spag6l mice showed normal appearance within the first week after birth, but reduced body size was observed after 1 week, and all developed hydrocephalus and died within 4 weeks of age. The phenotype mirrored that of the conventional Spag6l knockout mice. The newly established floxed Spag6l model provides a powerful tool to further investigate the role of the Spag6l gene in individual cell types and tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号