首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2382篇
  免费   240篇
  国内免费   126篇
  2024年   4篇
  2023年   44篇
  2022年   22篇
  2021年   67篇
  2020年   96篇
  2019年   105篇
  2018年   65篇
  2017年   100篇
  2016年   98篇
  2015年   80篇
  2014年   104篇
  2013年   125篇
  2012年   81篇
  2011年   90篇
  2010年   85篇
  2009年   126篇
  2008年   127篇
  2007年   130篇
  2006年   116篇
  2005年   104篇
  2004年   74篇
  2003年   80篇
  2002年   75篇
  2001年   67篇
  2000年   47篇
  1999年   61篇
  1998年   63篇
  1997年   55篇
  1996年   39篇
  1995年   53篇
  1994年   35篇
  1993年   45篇
  1992年   56篇
  1991年   30篇
  1990年   26篇
  1989年   33篇
  1988年   29篇
  1987年   18篇
  1986年   17篇
  1985年   22篇
  1984年   23篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有2748条查询结果,搜索用时 15 毫秒
91.
Cohesive sediment transport: emerging issues for toxic chemical management   总被引:1,自引:0,他引:1  
Ongley  E. D.  Krishnappan  B. G.  Droppo  G.  Rao  S. S.  Maguire  R. J. 《Hydrobiologia》1992,(1):177-187
The association of many environmentally sensitive chemicals and their transformation products with mineral and organic substrates is of considerable importance for environmental monitoring, prediction and management purposes in rivers and their basins. Our understanding of these relationships is poor. This paper reviews processes of particular concern, including the physical behaviour of fine-grained (< 63 µm) sediment in freshwater; the role of flocculation as a transport vector; the processes that control freshwater flocculation including microbiological factors; the uncertainty in conventional sediment transport models for predicting pathways of sediment-associated chemistry; the relationship between suspended sediment and toxicity in the water column; and the partitioning of chemicals between the sediment, organic and water phase, including the significance of these in predicting chemical transport on suspended matter.  相似文献   
92.
A method of enzyme release and aqueous two-phase extraction is described for the separation of penicillin acylase from Escherichia coli cells. Butyl acetate, 12% (v/v), treatment combined with freeze-thawing gives up to 70% enzyme release. For polyethylene glycol (PEG) + phosphate two-phase extraction systems the enzyme purity and yield were rather low. Modified PEG, including PEG-ampicillin, PEG-aniline, PEG-phosphate, and PEG-trimethylamine, were synthesized and used in aqueous two-phase systems; PEG-trimethylamine is the most satisfactory. A system containing 12% (w/w) PEG4000, 8% (w/w) of which is PEG-trimethylamine, with 0.7M potasium phosphate at pH 7.2, resulted in the enzyme selective partition being greatly enhanced by charge directed effects. Possible mechanisms for the separation process are discussed. (c) 1992 John Wiley & Sons, Inc.  相似文献   
93.
94.
Hans Schnyder 《Planta》1992,187(1):128-135
A photosynthate labelling method is presented which takes advantage of the natural difference in carbon-isotope composition () which exists between atmospheric CO2 (-8) and commercially available compressed CO2. Carbon dioxide with -4.0 and –27.9%., respectively, has been used for labelling. A plant growth cabinet served as the labelling compartment. CO2-free air was continuously injected at a rate of up to 54m3·h–1. Dilution of cabinet CO2 by CO2-free air was counterbalanced by addition of CO2 with known constant . Since the labelling-cabinet atmosphere was continuously exchanged at a high rate, photosynthetic carbon-isotope discrimination was fully expressed. In order to study the distribution of carbon acquired by the plant during a defined growth period, the of CO2 was modified by replacing, for example, atmospheric CO2 by CO2 with –27.9%. and the weight and 5 of plant carbon pools was monitored over time. In such an experiment the change of CO2 was followed by a rapid change of the of sucrose in mature flag-leaf blades of wheat (Triticum aestivum L.). The 5 of sucrose stabilized near –51%., indicating complete exchange by current photosynthate. In contrast 83% of the total carbon in mature flag-leaf blades was not exchanged after 14 d continuous labelling. Differential labelling of pre- and post-anthesis photosynthate indicated that 13% of grain carbon originated from pre-anthesis photosynthesis. Carbon-isotope discrimination and its consideration in experimentation and labelling data evaluation are discussed in detail. Since the air supplied to the labelling cabinet is dry and free of CO2, carbon-isotope discrimination and carbon turnover and partitioning can be studied over a wide range of CO2 concentrations (0–2600 cm3 · m–3) and vapor-pressure deficits.Abbreviation and Symbol PPFD photosynthetic photon flux density - carbon-isotope composition Dr. G. Schleser (Forschungszentrum Jülich, FRG) and Professor S. Hoernes (Mineralogisch-Petrologisches Institut, Universität Bonn) for valuable help and advice during the initial stages of the project and Professor W. Kühbauch (Institut für Pflanzenbau, Universität Bonn) for continuing support. Technical assistance of Ute Labusch, Petra Biermann, Ludwig Schmitz and Thomas Gebbing is gratefully acknowleged.
  相似文献   
95.
Root, underground and above-ground biomass were measured on various wheat cultivars from 1986 to 1988 in the south-east of France. The results are expressed as root: total (f r) or underground: total (f u) biomass fractions. Observed f r and f u values are in good agreement with previous results. f r and f u decrease steadily from emergence to maturity, with an exponential tendency. When using cumulative growth degree days since emergence relative to cumulative growth degree days until ear emergence () as time scale, f r and f u can be expressed as simple functions of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb% addaWgaaqaaiaadkhaaeqaamaabmaabaGccqaH4oqCdaahaaWcbeqa% aiaacQcaaaaamiaawIcacaGLPaaakiabg2da9iaaicdacaGGUaGaaG% imaiaaiwdacqGHRaWkcaaIWaGaaiOlaiaaiwdacaaI4aGaamyzamaa% CaaaleqabaGaeyOeI0IaaGymaiaac6cacaaI0aGaaGioaiabeI7aXn% aaCaaameqabaGaaiOkaaaaaaaakeaacaWGMbaddaWgaaqaaiaadwha% aeqaamaabmaabaGccqaH4oqCdaahaaWcbeqaaiaacQcaaaaamiaawI% cacaGLPaaakiabg2da9iaaicdacaGGUaGaaGymaiaaikdacqGHRaWk% caaIWaGaaiOlaiaaiIdacaaI4aGaamyzamaaCaaaleqabaGaeyOeI0% IaaGOmaiaac6cacaaIYaGaaGioaiabeI7aXnaaCaaameqabaGaaiOk% aaaaaaaaaaa!610D!\[\begin{gathered} f_r \left( {\theta ^* } \right) = 0.05 + 0.58e^{ - 1.48\theta ^* } \hfill \\ f_u \left( {\theta ^* } \right) = 0.12 + 0.88e^{ - 2.28\theta ^* } \hfill \\ \end{gathered} \]The incremental root biomass partitioning coefficient, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadkhaaeqaaOGaeyypa0JaaiikaiaadsgacaWGxbWaaSba% aSqaaiaadkhaaeqaaOGaai4laiaadsgacaWG0bGaaiykaiaac+caca% GGOaGaamizaiaadEfadaWgaaWcbaGaamiDaaqabaGccaGGVaGaamiz% aiaadshacaGGPaaaaa!4834!\[\alpha _r = (dW_r /dt)/(dW_t /dt)\], which describes the net increase in root biomass dW r over time dt relative to the increase in total biomass (dW r) over the same time period, has been derived from f and the relative growth rate. Its time course is accurately represented by% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegdda% WgaaqaaiaadkhaaeqaamaabmaabaGccqaH4oqCdaahaaWcbeqaaiaa% cQcaaaaamiaawIcacaGLPaaakiabg2da9iabgkHiTiaaicdacaGGUa% GaaGymaiaaiwdacqGHRaWkcaaIWaGaaiOlaiaaiAdacaaIZaGaamyz% amaaCaaaleqabaGaeyOeI0IaaGimaiaac6cacaaI5aGaaGioaiabeI% 7aXnaaCaaameqabaGaaiOkaaaaaaaaaa!4D15!\[\alpha _r \left( {\theta ^* } \right) = - 0.15 + 0.63e^{ - 0.98\theta ^* } \]Under our experimental conditions, with no severe water stresses or nutrient deficiencies, and for our sampling frequency, around 2 weeks, the development scale , is the main factor governing the time courses of f r, f u and r.  相似文献   
96.
Presented is a new simple method for multidimensional optimization of fed-batch fermentations based on the use of the orthogonal collocation technique. Considered is the problem of determination of optimal programs for fermentor temperature, substrate concentration in feed, feeding profile, and process duration. By reformulation of the state and control variables is obtained a nonsingular form of the optimization problem which has considerable advantage over the singular case since a complicated procedure for determination of switching times for feeding is avoided. The approximation of the state variables by Lagrange polynomials enables simple incorporation of split boundary conditions in the approximation, and the use of orthogonal collocations provides stability for integration of state and costate variables. The interpolation points are selected to obtain highest accuracy for approximation of the objective functional by the Radau-Lobatto formula. The control variables are determined by optimization of the Hamiltonian at the collocation points with the DFP method. Constraints are imposed on state and control variables.The method is applied for a homogeneous model of fermentation with volume, substrate, biomass, and product concentrations as the state variables. Computer study shows considerable simplicity of the method, its high accuracy for low order of approximation, and efficient convergence.  相似文献   
97.
Abstract. The use of root / shoot ratios to describe allocation of dry weight to structures for capturing soil resources and light is limited due to other functions of the root and shoot such as support and storage. The ratio of fine-root length to leaf area (RLA) provides a better expression of the relative sizes of above-and below-ground exchange surfaces. Dry matter partitioning, leaf area and root lengths were determined for five species of chalk grassland perennial (Carex flacca, Cirsium acaule, Festuca ovina, Leontodon hispidus and Scabiosa columbaria) by extraction of soil cores from an intact sward. The forb species had a greater proportion of their dry matter below-ground. Interspecific variation in values of RLA was considerable, mean values ranging from 137 m/m2 in Cirsium acaule to ca. 27 000 m/m2 for Festuca ovina. The implications of this interspecific variation in RLA for the competitive interactions in infertile calcareous grasslands are discussed in relation to phenology and internal nutrient cycling.  相似文献   
98.
A simple differential equation model was developed to describe the competitive interaction that may occur between species through reproductive interference. The model has the form comparable to Volterra's competition equations, and the graphical analysis of the outcome of the two-species interaction based on its zero-growth isoclines proved that: (1) The possible outcome in this model, as in usual models of resource competition, is either stable coexistence of both species or gradual exclusion of one species by the other, depending critically upon the values of the activity overlapping coefficient cij; (2) but, for the same cij-values, competitive exclusion is much more ready to occur here than in resource competition; (3) and moreover, the final result of the competition is always dependent on the initial-condition due to its non-linear isoclines, i.e., even under the parameter condition that generally allows both species to coexist, an extreme bias in intial density to one species can readily cause subsequent complete exclusion of its counterparts. Thus, it may follow that the reproductive interference is likely to be working in nature as an efficient mechanism to bring about habitat partitioning in either time or space between some closely related species in insect communities, even though they inhabit heterogeneous habitats where resource competition rarely occurs so that they could otherwise attain steady coexistence.  相似文献   
99.
There are, at least, three possible ways in which similar species coexist; resource partitioning, interference competition, and exploitation competition. Here, I investigated which way contributed to the coexistence of leafroller-hunting eumenid wasp species. Resource partitioning and, in addition, differential diet breadths proved to promote species coexistence in this case. First, I analyze the prey records and diet overlap of four eumenid species in a local area. The larger two eumenids hunted similar-sized prey items and had similar potential taxonomic prey uses. But the diet breadth of the subsocial eumenid was much wider than that of the solitary one. As a result, the diet overlap between the two large eumenids decreased. This was because the solitary eumenid attend repeatedly to the same hunting site inhabited by one abundant prey species, while the subsocial one made random hunting. On the other hand, the two medium-sized eumenids partitioned resources according to prey size. Secondly, I related these results to prey choice by several other species of eumenid obtained from literature sources. Ten Japanese common eumenids were divided into four groups according to their prey size. In each of the four groups, 2 to 3 wasp species differentiated the habitat (1 group) or coexisted by means of differential diet breadths (parallel with differential sociality, 2 groups).  相似文献   
100.
Jackson  T. A.  Parks  J. W.  Jones  P. D.  Woychuk  R. N.  Sutton  J. A.  Hollinger  J. D. 《Hydrobiologia》1982,91(1):473-487
Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (> 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号