首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   220篇
  国内免费   136篇
  2023年   47篇
  2022年   17篇
  2021年   51篇
  2020年   61篇
  2019年   84篇
  2018年   77篇
  2017年   68篇
  2016年   67篇
  2015年   79篇
  2014年   63篇
  2013年   78篇
  2012年   57篇
  2011年   39篇
  2010年   44篇
  2009年   97篇
  2008年   88篇
  2007年   88篇
  2006年   74篇
  2005年   74篇
  2004年   67篇
  2003年   45篇
  2002年   37篇
  2001年   42篇
  2000年   50篇
  1999年   40篇
  1998年   40篇
  1997年   37篇
  1996年   21篇
  1995年   23篇
  1994年   20篇
  1993年   18篇
  1992年   19篇
  1991年   16篇
  1990年   17篇
  1989年   9篇
  1988年   11篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1958年   1篇
排序方式: 共有1800条查询结果,搜索用时 15 毫秒
41.
42.
43.
《Journal of Asia》2020,23(2):404-410
Wildfire is an important disturbance factor in forest ecosystem and could affect the distribution of insects. Because Monochamus beetles are known vector insects of pine wood nematodes in Korea and burnt pine trees can be used as oviposition habitats for Monochamus beetles, we investigated changes in the spatial (among fire severity classes) and temporal (between years) distributions of M. alternatus and M. saltuarius. From late May 2017 to early October 2018, four multi-funnel traps with pheromone lure were installed in each fire severity class (unburned, light, light-moderate edge, moderate-severe edge, and severe). All traps were replaced fortnightly from May to October for two years. The spatial distribution of the two Monochamus beetles was significantly affected by fire severity. In particular, M. alternatus showed higher catches in the severely burned sites and responded positively to the fire. A similar number of M. saltuarius individuals were observed between 2017 and 2018, while more M. alternatus were caught in 2018 compared to 2017. Consequently, it was confirmed that the dead wood of P. densiflora caused by the wildfire had a great influence on the density of insects, especially M. alternatus.  相似文献   
44.
The role of herbivorous fish in threatening marine forests of temperate seas has been generally overlooked. Only recently, the scientific community has highlighted that high fish herbivory can lead to regime shifts from canopy‐forming algae to less complex turf communities. Here, we present an innovative herbivorous fish deterrent device (DeFish), which can be used for conservation and restoration of marine forests. Compared to most traditional fish exclusion systems, such as cages, the DeFish system does not need regular cleaning and maintenance, making it more cost‐efficient. Resistance of DeFish was tested by installing prototypes at different depths in the French Riviera and in Montenegro: more than 60% of the devices endured several years without maintenance, even if most of them were slightly damaged in the exposed site in Montenegro. The efficacy of DeFish in limiting fish herbivory was tested by an exclusion experiment on Cystoseira amentacea in the French Riviera. In a few months, the number of fish bite marks on the seaweed was decreased, causing a consequent increase in algal length. The device here presented has been conceived for Mediterranean canopy‐forming algae, but the same concept can be applied to other species vulnerable to fish herbivory, such as kelps or seagrasses. In particular, the DeFish design could be improved using more robust and biodegradable materials. Innovative engineering systems, such as DeFish, are expected to become useful tools in the conservation and restoration of marine forests, to complement other practices including active reforestation, herbivore regulation, and regular monitoring of their status.  相似文献   
45.
In tropical regions, rainfall gradients often explain the abundance and distribution of plant species. For example, many tree and liana species adapted to seasonal drought are more abundant and diverse in seasonally-dry forests, characterized by long periods of seasonal water deficit. Mean annual precipitation (MAP) is commonly used to explain plant distributions across climate gradients. However, the relationship between MAP and plant distribution is often weak, raising the question of whether other seasonal precipitation patterns better explain plant distributions in seasonally-dry forests. In this study, we examine the relationship between liana abundance and multiple metrics of seasonal and annual rainfall distribution to test the hypothesis that liana density and diversity increase with increasing seasonal drought along a rainfall gradient across the isthmus of Panama. We found that a normalized seasonality index, which combines MAP and the variability of monthly rainfall throughout the year, was a significant predictor of both liana density and species richness, whereas MAP, rainfall seasonality and the mean dry season precipitation (MDP) were far weaker predictors. The strong response of lianas to the normalized seasonality index indicates that, in addition to the total annual amount of rainfall, how rainfall is distributed throughout the year is an important determinant of the hydrological conditions that favor liana proliferation. Our findings imply that changes in annual rainfall and rainfall seasonality will determine the future distribution and abundance of lianas. Models that aim to predict future plant diversity, distribution, and abundance may need to move beyond MAP to a more detailed understanding of rainfall variability at sub-annual timescales.  相似文献   
46.
The composition of the skin microbiota of amphibians is related to the biology of host species and environmental microbial communities. In this system, the environment serves as a microbial source and can modulate the hosted community. When habitats are fragmented and the environment disturbed, changes in the structure of this microbial community are expected. One important potential consequence of fragmentation is a compromised protective function of the microbiota against pathogenic microorganisms. In this study, the skin microbiota of the amphibian Proceratophrys boiei was characterized, evaluated for relationships with environmental variables and environmental sources of microbial communities, and its diversity evaluated for frog populations from fragmented and continuous forests. In addition, the antimicrobial activity of this skin community was studied in frogs from both forest types. Culture methods and 16S rRNA high‐throughput gene sequencing were used to characterize the microbial community and demonstrated that the skin microbiota of P. boiei is more closely related to the soil microbial communities than those inhabiting water bodies or fragment matrix, the unforested area around the forested fragment. The microbial diversity and abundance of Pboiei skin microbiota are different between continuous forests and fragments. This community is correlated with environmental variables, especially with temperature of microhabitat and distance to human dwelling. All individuals of P. boiei harbored bacteria capable of inhibiting the growth of pathogenic bacteria and different strains of the pathogenic fungus Batrachochytrium dendrobatidis, and a total of 27 bacterial genera were detected. The results of this study indicate that the persistence of populations of this species will need balanced and sustained interactions among host, microorganisms, and environment.  相似文献   
47.
Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.  相似文献   
48.
Understanding predator–prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D. ) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D. ) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator–prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.  相似文献   
49.
兴都库什喜马拉雅地区高海拔树木生长对气候变化的响应 高海拔地区快速升温可能导致树木对温度响应更为敏感,而限制高海拔地区树木生长的关键气候因子以及气候变化对树木生长产生多大程度的影响尚不清楚。本研究在兴都库什喜马拉雅地区收集了73 个样点的树轮数据,包括3个优势属的树种(Abies属、Juniperus属和Picea属),样点海拔均在3000 m以上。 将时间动态规整(dynamic time warping)的方法用于建立亚区域年表,以考虑不同站点年表之间变化的同步 性。同时,定量分析了气候因子对树木生长的贡献以及树木生长与气候因子关系的时空动态。研究结果发现,73个站点年表可以聚为3类,且与其所处的生物气候区相对应,即西喜马拉雅地区,中东喜马拉雅地区和藏东南地区。在干旱的西喜马拉雅地区,树木生长与冬、春两季的降水呈正相关关系,而在湿润的藏东南地区,树木生长与冬季温度和春季降水呈正相关关系。树木生长受最低温度的影响最大,特别是冬季温度,其重要性从西到东呈现递增趋势。滑动窗口相关分析表明,在中西喜马拉雅地区,影响树木生长的冬季温度信号在减弱,然而在藏东南地区该信号随着1980年以来的快速升温而增强。本研究结果表明,若该地区升温持续,在西喜马拉雅地区可能会因变暖引起的水分亏缺而造成森林衰退,而在藏东南地区因树木生长得益于变暖而使得森林扩张。  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号