首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   91篇
  国内免费   142篇
  1007篇
  2024年   5篇
  2023年   12篇
  2022年   19篇
  2021年   37篇
  2020年   50篇
  2019年   39篇
  2018年   37篇
  2017年   43篇
  2016年   51篇
  2015年   41篇
  2014年   32篇
  2013年   63篇
  2012年   37篇
  2011年   39篇
  2010年   33篇
  2009年   35篇
  2008年   35篇
  2007年   46篇
  2006年   34篇
  2005年   36篇
  2004年   28篇
  2003年   22篇
  2002年   17篇
  2001年   16篇
  2000年   26篇
  1999年   25篇
  1998年   16篇
  1997年   14篇
  1996年   11篇
  1995年   9篇
  1994年   11篇
  1993年   9篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
排序方式: 共有1007条查询结果,搜索用时 0 毫秒
61.
草地螟对寄主植物的选择性及其化学生态机制   总被引:13,自引:0,他引:13  
尹姣  曹雅忠  罗礼智  胡毅 《生态学报》2005,25(8):1844-1852
田间自然条件下,草地螟成虫产卵对不同植物具有明显的选择性,其中灰菜上落卵量最多,占调查总卵量的50%以上;甜菜、大豆上次之,玉米和马铃薯上最少。在室内条件下,草地螟成虫产卵对灰菜、大豆、玉米和马铃薯的选择性与田间调查结果完全吻合。而且,草地螟幼虫的嗜食性与成虫产卵对寄主的选择性是一致的。吸附、收集上述植物的挥发物后进行GC-MS测定,并利用风洞进行了生测。其中灰菜和大豆的主要挥发物成分为反-2-己烯醛、青叶醇、青叶酯、1-十八烯等;玉米和马铃薯的挥发物性成分包括青叶酯、芳樟醇、香叶醇、紫罗酮、1-十八烯。生测结果表明,灰菜的挥发物对草地螟雌蛾引诱力最大,选择系数为78%;大豆苗挥发物对其也有较高的诱虫活性;但玉米和马铃薯几乎无引诱作用。自然生长的4种植物的诱虫结果与其挥发物的诱虫结果相似。这些生测结果与成虫和幼虫选择寄主的一致性反映了草地螟选择寄主行为的化学机制。  相似文献   
62.
Long‐distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long‐distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species’ dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed dispersal model to calculate dispersal kernels from dispersal traits. We used data on 190 plant species and calculated their regional survival in two ways, using species distribution data from 36,800 1 km2‐grid cells and 10,754 small plots covering the Netherlands during the largest part of the 20th century. We carried out correlation and stepwise multiple regression analyses to quantify the importance of long‐distance dispersal, expressed as the 99‐percentile dispersal distance of the dispersal kernels, relative to the importance of median‐distance dispersal and other plant traits that are likely to contribute to the explanation of regional survival: plant longevity (annual, biennial, perennial), seed longevity, and plant nutrient requirement. Results show that long‐distance dispersal plays a role in determining regional survival, and is more important than median‐distance dispersal and plant longevity. However, long‐distance dispersal by wind explains only 1–3% of the variation in regional survival between species and is equally important as seed longevity and much less important than nutrient requirement. In changing landscapes such as in the Netherlands, where large‐scale eutrophication and habitat destruction took place in the 20th century, plant traits indicating ability to grow under the changed, increasingly nutrient‐rich conditions turn out to be much more important for regional survival than seed dispersal.  相似文献   
63.
Losses of soil organic carbon under wind erosion in China   总被引:7,自引:0,他引:7  
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites.  相似文献   
64.
In wind‐pollinated plants, male‐biased sex allocation is often positively associated with plant size and height. However, effects of size (biomass or reproductive investment) and height were not separated in most previous studies. Here, using experimental populations of monoecious plants, Ambrosia altemisiifolia, we examined (1) how male and female reproductive investments (MRI and FRI) change with biomass and height, (2) how MRI and height affect male reproductive success (MRS) and pollen dispersal, and (3) how height affects seed production. Pollen dispersal kernel and selection gradients on MRS were estimated by 2,102 seeds using six microsatellite markers. First, MRI increased with height, but FRI did not, suggesting that sex allocation is more male‐biased with increasing plant height. On the other hand, both MRI and FRI increased with biomass but often more greatly for FRI, and consequently, sex allocation was often female‐biased with biomass. Second, MRS increased with both height and MRI, the latter having the same or larger effect on MRS. Estimated pollen dispersal kernel was fat‐tailed, with the maximum distance between mates tending to increase with MRI but not with height. Third, the number of seeds did not increase with height. Those findings showed that the male‐biased sex allocation in taller plants of A. artemisiifolia is explained by a direct effect of height on MRS.  相似文献   
65.
This article addresses agricultural metabolism and transitions for energy, nitrogen, farm production, self‐sufficiency, and surplus from historical data since the nineteenth century. It builds on an empirical data set on agricultural production and production means in France covering 130 consecutive years (1882–2013). Agricultural transitions have increased the net production and surplus of farms by a factor of 4 and have zeroed self‐sufficiency. The energy consumption remained quasi‐stable since 1882, but the energy and nitrogen structure of agriculture fully changed. With an EROI (energy return to energy invested) of 2 until 1950, preindustrial agriculture consumed as much energy to function as it provided in exportable surplus to sustain the nonagricultural population. The EROI doubled to 4 over the last 60 years, driven, on the one hand, by efficiency improvements in traction through the replacement of draft animals by motors and, on the other hand, by the joint increase in crop yields and efficiency in nitrogen use. Agricultural energy and nitrogen transitions shifted France from a self‐sufficiency agri‐food‐energy regime to a fossil‐dependent food export regime. Knowledge of resource conversion mechanisms over the long duration highlights the effects of changing agricultural metabolism on the system's feeding capacity. Farm self‐sufficiency is an asset against fossil fuel constraints, price volatility, and greenhouse gas emissions, but it equates to lower farm surplus in support of urbanization.  相似文献   
66.
67.
Bat fatality at wind energy facilities is a conservation issue, but its effect on bat populations is difficult to estimate. We have little understanding of wind turbine effects on bat population persistence, in part because we have poor knowledge of bat migration pathways and hence the source populations for individual fatalities. We used deuterium ratio analysis combined with genetic algorithm for rule-set prediction and the web-based isoscapes modeling, analysis, and prediction in a geographic information system environment as a novel approach. Our objectives were to explore the utility of these methods together and map the geographic extents of eastern red bat (Lasiurus borealis) specimens salvaged in 2008–2010 from a single, 92-km2 wind energy facility in Illinois, USA. Results indicate that combining these methods can be successful and support their use with species where ranges may be less well defined. Because of the migratory nature of this species and the range of deuterium values of pixels in our isotope model, we predicted that 18% and 82% of the specimens would have isotope results inside and outside of the wind facility's isocline respectively. We concluded that 71.4% of the specimens had isotope signatures placing them outside the wind facility's isocline. It could be argued that the wide distribution of bat fatalities dilutes the overall effect of those fatalities on the bat species; however, if other facilities show a similar pattern, each facility could have cumulative and far reaching population-level effects. © 2019 The Wildlife Society.  相似文献   
68.
王凯  梁红  施鹏  赵鸣 《生态学报》2019,39(16):6051-6057
城市开放空间的风场不仅影响微环境的"风感"舒适度还影响宏观尺度的城市气候。从景感生态学的角度出发,首先阐述"风感"的定义,总结了街道峡谷空间风场的基本规律和特点。运用Kestrel NK4500手持气象站对城市开放空间的风环境进行实测,采用CFD(Computational Fluid Dynamics)模拟软件Fluent 14.0对不含绿地的同一空间进行风环境模拟,通过两者的数据比对来研究紧凑型城市开放空间内绿地对行人高度风场的实际干扰程度。结果发现,紧凑型城市开放空间的"风感"受建筑和绿地空间布局的共同影响。当建筑高于绿地时,风场受建筑的控制;当林带高于建筑时,林带对风环境的影响程度受其疏密度影响。疏密度较高的常绿林带对风向和风速影响很大,而疏密度较低的林带会影响风速,对风向影响不大。影响风速的主要因素是空间围合所形成的空气域,相比实体、多孔介质,空气域对风的阻力要小的多。如铺装、草坪上方的通风廊道是影响行人高度层通风、导风的关键因素。紧凑型空间内的绿地在行人高度应保持通畅以保证通风,并通过建立平面和竖向上的通风、导风廊道体系,促进空气循环。  相似文献   
69.
Polycyclic aromatic hydrocarbons (PAHs) contamination has been considered as one of the major environmental concerns for farmland soil all over the world including China. Due to small per capita land area, to find crops or vegetable, which could not only degrade the PAHs contaminants but also would not concentrate PAHs, was particularly important. Celery was selected as the phytoremediator in this experiment, and the soil enzyme activity, PAHs-degrading microorganisms, and the speciation of PAHs in soil were studied. The results showed that celery could significantly enhance the remediation of PAHs compared with the controlled experiment after 90 days (p< 0.01), and the removal efficiency were 31.29%, 30.79%, and 50.21% in the soil, non-rhizosphere soil, and rhizosphere soil, respectively. The soil enzyme activity and PAHs-degrading microorganisms significantly increased in rhizosphere soil compared with non-rhizosphere soil (p< 0.05), and the bioaccessibility of PAHs in soil could have been enhanced in the presence of celery root exudates. Those would help the bioremediation of PAHs by soil microorganisms. Meanwhile, the concentration of PAHs in the edible portion of celery was only 17.13 ± 1.24 μg/kg, and the bioconcentration factors in the aboveground part of celery were only 0.025. This study provides a potential in-site farmland soil phytoremediation technology that could have practical utility.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号