首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1556篇
  免费   108篇
  国内免费   36篇
  2024年   3篇
  2023年   56篇
  2022年   66篇
  2021年   99篇
  2020年   76篇
  2019年   111篇
  2018年   87篇
  2017年   73篇
  2016年   60篇
  2015年   78篇
  2014年   92篇
  2013年   128篇
  2012年   61篇
  2011年   46篇
  2010年   42篇
  2009年   35篇
  2008年   25篇
  2007年   82篇
  2006年   43篇
  2005年   31篇
  2004年   36篇
  2003年   38篇
  2002年   37篇
  2001年   17篇
  2000年   33篇
  1999年   31篇
  1998年   35篇
  1997年   43篇
  1996年   23篇
  1995年   54篇
  1994年   33篇
  1993年   2篇
  1992年   4篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1700条查询结果,搜索用时 15 毫秒
101.
Dysfunction of the adipose tissue is a central driver for obesity-associated diabetes. It is characterized by dysregulated adipokine secretion, which contributes to insulin resistance of key metabolic tissues, including the liver, skeletal muscles, and fat itself. The inter-organ cross talk between the adipose tissue and the other organs as well as the intra-organ cross talk between adipocytes and macrophages within the adipose tissue, traditionally mediated by hormones, was recently evidenced to be regulated by adipose-derived exosomes. Exosomes are nano-sized membrane-bound vesicles secreted by the donor cells to modify intercellular communication by translating constituent nucleic acids and proteins to the target cells. Herein, we reviewed the latest progress in understanding the role of adipose-derived exosomes in the development of insulin resistance, a key mechanism that underpins diabetes and diabetic complications, with a special focus on the role of exosomal miRNAs (micro RNAs) and proteins, and discusses the potential implications of targeting adipose tissue-derived exosomes for diabetic therapeutics.  相似文献   
102.
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.  相似文献   
103.
Adipose-derived stem cells (ADSCs) can differentiate into neurons under particular conditions. It remains largely unknown whether this differentiation potential is affected by physical conditions such as obesity, which modulates the functions of adipose tissue. In this study, we determined the impact of either a 9-week high-fat diet (60% fat; HFD) or 9-week exercise training on the differentiation potential of ADSCs into neuron-like cells in male Wistar rats. Rats were randomly assigned to a normal diet-fed (ND-SED) group, HFD-fed (HFD-SED) group, or exercise-trained HFD-fed group (HFD-EX). After a 9-week intervention, ADSCs from all groups differentiated into neuron-like cells. Expression of neuronal marker proteins (nestin, βIII-tubulin, and microtubule-associated protein 2 [MAP2]) and the average length of cell neurites were lower in cells from HFD-SED rats than in other groups. Instead, protein expression of COX IV and Cyt-c, the Bax/Bcl-2 and LC3-II/I ratio, and the malondialdehyde level in culture medium were higher in cells from HFD-SED rats. No significant difference between ND-SED and HFD-EX rats was observed, except for the average length of cell neurites in MAP2. Thus, HFD impaired the differentiation potential of ADSCs into neuron-like cells, which was accompanied by increases in apoptotic activity and oxidative stress. Importantly, exercise training ameliorated the HFD-induced impairment of neurogenesis in ADSCs. The adipose tissue microenvironment could influence the differentiation potential of ADSCs, a source of autologous stem cell therapy.  相似文献   
104.
105.
106.
107.

Objective

Proteoglycan 4 (Prg4) has emerged from human association studies as a possible factor contributing to weight gain, dyslipidemia and insulin resistance. In the current study, we investigated the causal role of Prg4 in controlling lipid and glucose metabolism in mice.

Methods

Prg4 knockout (KO) mice and wild-type (WT) littermates were challenged with an obesogenic high-fat diet (45% of total calories as fat) for 16?weeks. To further stimulate the development of metabolic alterations, 10% fructose water was provided starting from week 13.

Results

Prg4 deficiency only tended to reduce diet-induced body weight gain, but significantly improved glucose handling (AUC: ?29%; p?<?0.05), which was also reflected by a tendency towards a reduced HOMA-IR score (?49%; p?=?0.06 as compared to WT mice). This coincided with lower hepatic expression of glycolysis (Gck: ?30%; p?<?0.05) and lipogenesis (Acc: ?21%; p?<?0.05 and Scd1: ?38%; p?<?0.001) genes, which translated in significantly lower hepatic triglyceride levels (?56%; p?<?0.001) in Prg4 KO mice as compared to WT mice. Prg4 KO mice likely had lower glucose utilization by skeletal muscle as compared to WT mice, judged by a significant reduction in the genes Glut4 (?29%; p?<?0.01), Pfkm (?21%; p?<?0.05) and Hk2 (?39%; p?<?0.001). Moreover, Prg4 KO mice showed a favorable white adipose tissue phenotype with lower uptake of triglyceride-derived fatty acids (?46%; p?<?0.05) and lower gene expression of inflammatory markers Cd68, Mcp1 and Tnfα (?65%, ?81% and ?63%, respectively; p?<?0.01) than WT mice.

Conclusion

Prg4 KO mice are protected from high-fat diet-induced glucose intolerance and fatty liver disease.  相似文献   
108.
The recently discovered uncoupling protein 3 (UCP3) is highly homologous to the mitochondrialinner membrane protein UCP1, which generates heat by uncoupling the respiratory chainfrom oxidative phosphorylation. The thermogenic function of UCP1 protects against cold andregulates the energy balance in rodents. We review in vitro studies investigating the uncouplingactivity of UCP3 and in vivo studies, which address UCP3 gene expression in brown adiposetissue and skeletal muscle under various metabolic conditions. The data presented are, for themost, consistent with an uncoupling role for UCP3 in regulatory thermogenesis. We alsodiscuss mediators of UCP3 regulation and propose a potential role for intracellular fatty acidsin the mechanism of UCP3 modulation. Finally, we hypothesize a role for UCP3 in themetabolic adaptation of the mitochondria to the degradation of fatty acids.  相似文献   
109.
The metabolic differences in vitro between genetic and dietary obese rats in the uptake of ammonium and amino acids by the liver and their use for ureogenesis have been assayed using hepatocytes isolated from Lean, Obese Zucker (Genetic obese) rats and Dietary obese rats. The hepatocytes of genetic obese animals took up more ammonium and produced higher amounts of urea from ammonium and alanine than those of lean and dietary obese groups (2 and 5 times more respectively). In the lean and dietary obese groups urea synthesis accounted for almost all the nitrogen taken up as ammonium. Thus, dietary and genetic obesity show a widely different handling of nitrogen, and the genetic obese rats need to break down protein to maintain their hepatocyte function.  相似文献   
110.
Adán  C.  Grasa  M.M.  Cabot  C.  Esteve  M.  Vilà  R.  Masanés  R.  Estruch  J.  Fernández-López  J.A.  Remesar  X.  Alemany  M. 《Molecular and cellular biochemistry》1999,197(1-2):109-115
Young female Zucker fa/fa rats of 370-430 g were implanted with osmotic minipumps releasing 3.5 mol/dayúkg of estrone oleate in liposomes (Merlin-2) into the bloodstream for up to 14 days. Merlin-2 induced a sustained loss of appetite, and a decrease in body weight of 3.5%, which contrasts with the 8.2% increase in controls during the period studied. Plasma insulin, glucose and urea decreased, and liver glycogen increased with Merlin-2 treatment. Plasma ACTH and corticosterone increased to a maximum at the end of the experiment. The expression of the ob gene in adipose tissue was unchanged, and plasma leptin levels were also unchanged by treatment. Estrone levels increased more than 1500-fold, and estrone oleate rose 100-fold during treatment. The fact that estrone oleate had no effect on the leptin levels or expression in obese rats, in contrast with the marked inhibition observed in the lean suggests that the functionality of the leptin receptor is essential for estrone oleate inhibition of the ob gene. This also suggests that leptin may control ob gene expression in white adipose tissue and that estrone oleate may activate this process. The slimming effect of estrone oleate is, thus, not directly dependent on leptin, since both normoleptinemic and hyperleptinemic animals lose fat following treatment nor are the effects on appetite and energy expenditure mediated by leptin. However, leptin levels and the expression of the ob gene are directly linked with estrone oleate function. A possible involvement of leptin in estrone oleate action is postulated. The results support the participation of estrone oleate in the control of body weight and hint at the complexity of its regulation by leptin and glucocorticoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号