首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2438篇
  免费   182篇
  国内免费   179篇
  2024年   5篇
  2023年   24篇
  2022年   32篇
  2021年   69篇
  2020年   59篇
  2019年   83篇
  2018年   60篇
  2017年   58篇
  2016年   87篇
  2015年   94篇
  2014年   102篇
  2013年   106篇
  2012年   91篇
  2011年   80篇
  2010年   73篇
  2009年   92篇
  2008年   96篇
  2007年   118篇
  2006年   94篇
  2005年   89篇
  2004年   84篇
  2003年   85篇
  2002年   61篇
  2001年   71篇
  2000年   58篇
  1999年   63篇
  1998年   58篇
  1997年   57篇
  1996年   58篇
  1995年   43篇
  1994年   55篇
  1993年   54篇
  1992年   51篇
  1991年   55篇
  1990年   45篇
  1989年   41篇
  1988年   58篇
  1987年   34篇
  1986年   25篇
  1985年   43篇
  1984年   36篇
  1983年   16篇
  1982年   27篇
  1981年   32篇
  1980年   19篇
  1979年   19篇
  1978年   6篇
  1977年   14篇
  1975年   7篇
  1974年   5篇
排序方式: 共有2799条查询结果,搜索用时 18 毫秒
21.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
22.
The mechanism of resistance toB toxicity in barley and wheat was studied in a solution culture experiment using several cultivars displaying a large range of sensitivity to excessB supply. Plants were cultured for 35 d atB concentrations ranging from normal to excessive (15 to 5000 M, respectively) then examined for dry matter production and theB distribution between roots and shoots.In both species, increasedB supply was accompanied by increased tissueB concentrations, development ofB toxicity symptoms and depressed growth. At each level ofB supply, however, resistant cultivars accumulated considerably lessB than did sensitive cultivars, in both roots and shoots. Even at the lowestB supply, at which noB toxicity symptoms developed and growth was not affected, resistant cultivars maintained relatively low tissueB concentrations. No cultivar displayed an ability to tolerate high tissueB concentrations.These results indicate that sensitivity toB toxicity in barley and wheat is governed by the ability of cultivars to excludeB. If theB concentrations of tissues is used to indicate resistance toB toxicity, then cultivars have the same ranking whether cultured at a normal or excessB supply.  相似文献   
23.
The potential of barley (Hordeum vulgare L.) and tomato (Lycopersicon esculentum Mill.) roots for net NO 3 - absorption increased two-to five fold within 2 d of being deprived of NO 3 - supply. Nitrogen-starved barley roots continued to maintain a high potential for NO 3 - absorption, whereas NO 3 - absorption by tomato roots declined below control levels after 10 d of N starvation. When placed in a 0.2 mM NO 3 - solution, roots of both species transported more NO 3 - and total solutes to the xylem after 2 d of N starvation than did N-sufficient controls. However, replenishment of root NO 3 - stores took precedence over NO 3 - transport to the xylem. Consequently, as N stress became more severe, transport of NO 3 - and total solutes to the xylem declined, relative to controls. Nitrogen stress caused an increase in hydraulic conductance (L p) and exudate volume (J v) in barley but decrased these parameters in tomato. Nitrogen stress had no significant effect upon abscisic acid (ABA) levels in roots of barley or flacca (a low-ABA mutant) tomato, but prevented an agerelated decline in ABA in wild-type tomato roots. Applied ABA had the same effect upon barley and upon the wild type and flacca tomatoes: L p and J v were increased, but NO 3 - absorption and NO 3 - flux to the xylem were either unaffected or sometimes inhibited. We conclude that ABA is not directly involved in the normal changes in NO 3 - absorption and transport that occur with N stress in barley and tomato, because (1) the root ABA level was either unaffected by N stress (barley and flacca tomato) or changed, after the greatest changes in NO 3 - absorption and transport and L p had been observed (wild-type tomato); (2) changes in NO 3 - absorption/transport characteristics either did not respond to applied ABA, or, if they did, they changed in the direction opposite to that predicted from changes in root ABA with N stress; and (3) the flacca tomato (which produces very little ABA in response to N stress) responded to N stress with very similar changes in NO 3 - transport to those observed in the wild type.Abbreviation and symbols ABA abscisic acid - Jv exudate volume - Lp root hydraulic conductance  相似文献   
24.
Transport of proteins into yeast mitochondria   总被引:1,自引:0,他引:1  
The amino-terminal sequences of several imported mitochondrial precursor proteins have been shown to contain all the information required for transport to and sorting within mitochondria. Proteins transported into the matrix contain a matrix-targeting sequence. Proteins destined for other submitochondrial compartments contain, in addition, an intramitochondrial sorting sequence. The sorting sequence in the cytochrome c1 presequence is a stop-transport sequence for the inner mitochondrial membrane. Proteins containing cleavable presequences can reach the intermembrane space by either of two pathways: (1) Part of the presequence is transported into the matrix; the attached protein, however, is transported across the outer but not the inner membrane (eg, the cytochrome c1 presequence). (2) The precursor is first transported into the matrix; part of the presequence is then removed, and the protein is reexported across the inner membrane (eg, the precursor of the iron-sulphur protein of the cytochrome bc1 complex). Matrix-targeting sequences lack primary amino acid sequence homology, but they share structural characteristics. Many DNA sequences in a genome can potentially encode a matrix-targeting sequence. These sequences become active if positioned upstream of a protein coding sequence. Artificial matrix-targeting sequences include synthetic presequences consisting of only a few different amino acids, a known amphiphilic helix found inside a cytosolic protein, and the presequence of an imported chloroplast protein. Transport of proteins across mitochrondrial membranes requires a membrane potential, ATP, and a 45-kd protein of the mitochondrial outer membrane. The ATP requirement for import is correlated with a stable structure in the imported precursor molecule. We suggest that transmembrane transport of a stably folded precursor requires an ATP-dependent unfolding of the precursor protein.  相似文献   
25.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   
26.
Most bacteria, fungi, and some plants respond to Fe stress by the induction of high-affinity Fe transport systems that utilize biosyrthetic chelates called siderophores. To competitively acquire Fe, some microbes have transport systems that enable them to use other siderophore types in addition to their own. Bacteria such as Escherichia coli achieve this ability by using a combination of separate siderophore receptors and transporters, whereas other microbial species, such as Streptomyces pilosus, use a low specificity, high-affinity transport system that recognizes more than one siderophore type. By either strategy, such versatility may provide an advantage under Fe-limiting conditions; allowing use of siderophores produced at another organism's expense, or Fe acquisition from siderophores that could otherwise sequester Fe in an unavailable form.Plants that use microbial siderophores may also be more Fe efficient by virtue of their ability to use a variety of Fe sources under different soil conditions. Results of our research examining Fe transport by oat indicate parity in plant and microbial requirements for Fe and suggest that siderophores produced by root-colonizing microbes may provide Fe to plants that can use the predominant siderophore types. In conjunction with transport mechanisms, ecological and soil chemical factors can influence the efficacy of siderophores and phytosiderophores. A model presented here attempts to incorporate these factors to predict conditions that may govern competition for Fe in the plant rhizosphere. Possibly such competition has been a factor in the evolution of broad transport capabilities for different siderophores by microorganisms and plants.  相似文献   
27.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   
28.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   
29.
Summary A re-examination of earlier NPK fertilization experiments in Douglas fir stands on sandy soils shows the effects of high nitrogen input by air pollution during the last 10–15 years on plant nutrition at these sites. In 1960, experimental plots showed a positive growth reaction to nitrogen, phosphorus, and potassium fertilization. All suffered from severe phosphorus deficiency in 1984, low phosphorus in the needles was invariably accompanied by a high nitrogen content, with all N/P ratios between 20 and 30. The same conclusion emerges from an independent investigation of nutrient status of a selection of Douglas fir stands. Hence, if stand productivity and a balanced nutrient status of the trees is to be maintained, the increase in atmospheric input of nitrogen calls for supplementary fertilization. Given the current N/P ratios in the needles, a positive growth response to phosphorus fertilization is to be expected.  相似文献   
30.
The effects of adequate and restricted dietary protein and vitamin A on responses to infections by Nippostrongylus brasiliensis and N. brasiliensis plus Eimeria nieshulzi were determined in growing Sprague-Dawley rats. Infected rats experienced anorexia followed by a rebound in consumption that compensated for weight losses during anorexia. On certain days, reductions in the urinary/fecal nitrogen ratio, fecal and absorbed nitrogen, and apparent nitrogen and dry matter digestibilities occurred with the combined infections but not with those by nematodes alone. Effects of different levels of vitamin A were expressed only as an increase in nitrogen absorption occurring during the post-anoretic increase in appetite found with infected rats and in rats restricted in protein but receiving the higher level of the vitamin. Protein level was the most significant treatment effect: rats on high protein performed significantly better than those on low, regardless of the level of the other experimental variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号