首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3271篇
  免费   324篇
  国内免费   866篇
  2024年   6篇
  2023年   67篇
  2022年   94篇
  2021年   129篇
  2020年   158篇
  2019年   162篇
  2018年   157篇
  2017年   128篇
  2016年   146篇
  2015年   144篇
  2014年   159篇
  2013年   198篇
  2012年   120篇
  2011年   156篇
  2010年   104篇
  2009年   130篇
  2008年   117篇
  2007年   174篇
  2006年   151篇
  2005年   186篇
  2004年   129篇
  2003年   140篇
  2002年   148篇
  2001年   134篇
  2000年   96篇
  1999年   107篇
  1998年   80篇
  1997年   90篇
  1996年   78篇
  1995年   87篇
  1994年   75篇
  1993年   101篇
  1992年   74篇
  1991年   50篇
  1990年   66篇
  1989年   60篇
  1988年   45篇
  1987年   38篇
  1986年   24篇
  1985年   31篇
  1984年   22篇
  1983年   9篇
  1982年   27篇
  1981年   20篇
  1980年   12篇
  1979年   10篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1958年   4篇
排序方式: 共有4461条查询结果,搜索用时 31 毫秒
61.
Inorganic-N concentrations in soil solution of whole tree harvest (WTH) and conventional fell (CF) plots were monitored for two years before felling and four years after felling. Concentrations in the mineral soil after felling were higher than in standing forest for up to 14 months in both felling treatments. In the WTH plots inorganic-N concentrations then dropped steadily until four years after felling they approached zero. In contrast, inorganic-N concentrations of the CF plots remained comparatively large. Inorganic-N was dominated by nitrate throughout the period of the study, and especially in the mineral horizons.Felling debris was not a source of inorganic-N, unless indirectly through release and mineralisation of soluble organic-N. Vegetation cover, biomass and N content were substantially greater in the WTH plots two to three years after felling, compared with the CF. Vegetation cover and brash cover (slash cover in N. America) were negatively correlated. There was also a negative correlation between inorganic-N concentration in soil water samplers and the vegetation cover within the collection area of, or a 1 m square surrounding, these samplers.Two factors are probably responsible for the reduction in inorganic-N concentrations after felling in the WTH — the rapid re-establishment of vegetation and the lack of a N source in felling debris. In the CF plots, brash prevents re-establishment of vegetation over wide areas for at least four years. However, brash is not directly a source of inorganic-N at this stage.  相似文献   
62.
Lake Baikal, Russian Siberia, was sampled in July 1990 during the period of spring mixing and initiation of thermal stratification. Vertical profiles of temperature, dissolved nutrients (nitrate and soluble reactive phosphorus), phytoplankton biomass, and primary productivity were determined in an eleven-station transect encompassing the entire 636 km length of the lake. Pronounced horizontal variability in hydrodynamic conditions was observed, with the southern region of the lake being strongly thermally stratified while the middle and north basins were largely isothermal through July. The extent of depletion of surface water nutrients, and the magnitude of phytoplankton biomass and productivity, were found to be strongly correlated with the degree of thermal stratification. Horizontal differences likely reflected the contribution of two important factors: variation in the timing of ice-out in different parts of the lake (driving large-scale patterns of thermal stratification and other limnological properties) and localized effects of river inflows that may contribute to the preliminary stabilization of the water column in the face of intense turbulent spring mixing (driving meso-scale patterns). Examination of the relationships between surface water inorganic N and P depletion suggested that during the spring and early summer, phytoplankton growth in unstratified portions of the lake was largely unconstrained by nutrient supplies. As summer progressed, the importance of co-limitation by both N and P became more apparent. Uptake and regeneration rates, measured directly using the stable isotope 15N, revealed that phytoplankton in stratified portions of the lake relied primarily on NH4 as their N source. Rates of NH4 regeneration were in approximate equilibrium with uptake; both processes were dominated by organisms <2 µm. This pattern is similar to that observed for oligotrophic marine systems. Our study underscores the importance of hydrodynamic conditions in influencing patterns of biological productivity and nutrient dynamics that occur in Lake Baikal during its brief growing season.  相似文献   
63.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   
64.
Variable effects of air-drying on leaching losses from tree leaf litter   总被引:3,自引:3,他引:0  
Leaching of soluble substances may be an important first step in leaf litter decomposition in small streams, but recent research has suggested that large leaching losses (up to 30% of initial mass in 48 h) may be an artifact created by using air-dried leaves in decomposition experiments. In laboratory experiments, we compared 3 d leaching losses from freshly fallen and air-dried senescent leaves of 27 tree species from different regions across Canada. Air-dried leaves from all species leached measurable amounts of original mass (3.6–32.8% dry mass), but leaching losses from fresh leaves (0–35%) were detectable in all but two species. Air-drying increased leaching losses in many species, but in others it reduced leaching losses or had no measurable effect. Results for leaves of the same species collected in different regions or in different years were generally similar, but species within the same genus often behaved very differently. Neither moisture content (fresh or air-dried), leaf thickness, nor cuticle thickness proved of any value as predictors of leaching losses or the effect of air-drying. The propensity of autumn-fallen leaves to leach, whether fresh or air-dried, appears to be a property of the individual tree species.  相似文献   
65.
Interactive effects of seven years of compaction due to wheel traffic and tillage on root density, formation of arbuscular mycorrhizae, above-ground biomass, nutrient uptake and yield of corn (Zea mays L.) were measured on a coastal plain soil in eastern Alabama, USA. Tillage and soil compaction treatments initiated in 1987 were: 1) soil compaction from tractor traffic with conventional tillage (C,CT), 2) no soil compaction from tractor traffic with conventional tillage (NC,CT), 3) soil compaction from tractor traffic with no-tillage (C,NT), and, 4) no soil compaction from tractor traffic with no-tillage (NC,NT). The study was arranged as a split plot design with compaction from wheel traffic as main plots and tillage as subplots. The experiment had four replications. In May (49 days after planting) and June, (79 days after planting), root biomass and root biomass infected with arbuscular mycorrhizae was higher in treatments that received the NC,NT treatment than the other three treatments. In June and July (109 days after planting), corn plants that received C,CT treatment had less above-ground biomass, root biomass and root biomass infected with mycorrhizae than the other three treatments. Within compacted treatments, plants that received no-tillage had greater root biomass and root biomass infected with mycorrhizae in May and June than plants that received conventional tillage. Corn plants in no-tillage treatments had higher root biomass and root biomass infected with mycorrhizae than those in conventional tillage. After 7 years of treatment on a sandy Southeastern soil, the interactive effects of tillage and compaction from wheel traffic reduced root biomass and root biomass infected with mycorrhizae but did not affect plant nutrient concentration and yield. ei]J H Graham  相似文献   
66.
To assess genotypic variability in nutrient supply of shoot branches, the distribution of 32P and 45Ca exported from a source nodal root (24-h uptake period) was measured within a genotype of a large-leaved (Kopu) and a small-leaved (Tahora) cultivar of Trifolium repens. Source-sink relationships of plants were modified by root severance, defoliation, and shade treatments. In control plants of both genotypes distribution of 32P and 45Ca closely followed the pathways that could be predicted from the known phyllotactic constraints on the vascular system. As such there was little allocation of radioisotopes (3.1% and 2.5% of exported 32P and 45Ca, respectively) from the source root to branches on the apposite side of the parent axis (far-side branches). However, genotypic differences in nutrient allocation were apparent, when treatments were imposed to alter intra-plant source-sink relationships. In the large-leaved genotype, the imposed treatments had minor effects on the allocation to far-side branches: whereas, in the small-leaved genotype, root severance and defoliation treatments increased lateral transport to far-side branches to 30% (32P) and 10% (45Ca) of exported radioisotopes. Genotypes with low (8–9) and high (12–13) numbers of vascular bundles were selected from within the large-leaved cultivar. Distribution of 32P was then measured after plants had been pre-treated by removal of all far-side roots two days prior to labelling. Genotypes with low vascular bundle number allocated 20% and those with high vascular bundle number 3.2% of exported 32P to far-side branches. It was concluded (1) that genotypic variation exists within T. repens for potential to alter intra-plant allocation of mineral nutrients, in response to treatments that modify source-sink relationships within plants; and (2) that this variation is correlated with differences among genotypes in the organisation of the vasculature of their stolons.  相似文献   
67.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   
68.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
69.
Both experimental extractions and theoretical calculations were undertaken to assess whether organic acid-mediated Fe dissolution could play a significant role in elevating the concentration of Fe-complexes in the rhizosphere, and further, whether this could satisfy the Fe demands of a plant utilizing ferric reduction to acquire Fe. Using a mathematical computer model, it was predicted that organic acids released from and diffusing away from the root would result in a solution organic acid concentration at the root surface of between 1 to 50 M. Over 99% of the organic acids lost by the root were predicted to remain within 1 mm of the root surface. The experimental results indicated that citrate-mediated Fe dissolution of amorphous Fe(OH)3, was rapid in comparison with citrate dissolution of the Fe-oxides, Fe2O3 and Fe3O4. The rate of citrate and malate mediated Fe-dissolution was dependent on many factors such as pH, metal cations and phosphate saturation of the Fe(OH)3 surface. At pH values 6.8, citrate formed stable complexes with Fe and dissolution proceeded rapidly. Under optimal growth conditions for a plant utilizing a reductive-bound mechanism of Fe acquisition (dicots and non-grass monocots), it can be expected that citrate and malate may be able to satisfy a significant proportion of the plant's Fe demand through the formation of plant-available organic-Fe3+ complexes in the rhizosphere. In high pH soils (pH7.0), the plant must rely on other sources of Fe, as citrate-mediated Fe dissolution is slow and Fe-citrate complexes are unstable. Alternatively, the root acidification of the rhizosphere could allow the formation of stable Fe-organic complexes. ei]H Marschner  相似文献   
70.
Different submodels within complex model packages on N regimes-for plant N-uptake, net N-mineralization, nitrate leaching and microbial N immobilization-are critically reviewed mainly with regard to their prediction ability on the basis of three comparative papers. Only for some of the processes adequate statistical evaluation of the models was possible. Compared to the other statistically evaluable process, nitrate leaching, modeling of plant N-uptake yields the better results. Most models for mineralization use arbitrary approaches rather than empirical ones. Although only approximate estimates of N mineralisation were at hand, the models generally behave expectedly poor. Only one model-DAISY-out of 16 involved in the comparison uses an explicit microbial biomass sub-model including microbial growth, decline and maintenance terms. So DAISY is the only model coupling C and N cycles. But what is true for an individual model describing the C and N transformation of a lab incubation experiment seems to be valid for most of the complex simulation work on the C and N regimes: this model was said to be overparameterized with respect to the available data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号