首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8696篇
  免费   867篇
  国内免费   1901篇
  2024年   10篇
  2023年   186篇
  2022年   169篇
  2021年   256篇
  2020年   351篇
  2019年   350篇
  2018年   330篇
  2017年   348篇
  2016年   400篇
  2015年   373篇
  2014年   345篇
  2013年   555篇
  2012年   354篇
  2011年   415篇
  2010年   300篇
  2009年   395篇
  2008年   407篇
  2007年   432篇
  2006年   428篇
  2005年   446篇
  2004年   319篇
  2003年   380篇
  2002年   324篇
  2001年   302篇
  2000年   245篇
  1999年   254篇
  1998年   239篇
  1997年   208篇
  1996年   219篇
  1995年   208篇
  1994年   194篇
  1993年   210篇
  1992年   194篇
  1991年   162篇
  1990年   163篇
  1989年   169篇
  1988年   159篇
  1987年   103篇
  1986年   86篇
  1985年   105篇
  1984年   96篇
  1983年   40篇
  1982年   70篇
  1981年   32篇
  1980年   26篇
  1979年   26篇
  1978年   23篇
  1977年   9篇
  1976年   11篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
191.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   
192.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   
193.
Different submodels within complex model packages on N regimes-for plant N-uptake, net N-mineralization, nitrate leaching and microbial N immobilization-are critically reviewed mainly with regard to their prediction ability on the basis of three comparative papers. Only for some of the processes adequate statistical evaluation of the models was possible. Compared to the other statistically evaluable process, nitrate leaching, modeling of plant N-uptake yields the better results. Most models for mineralization use arbitrary approaches rather than empirical ones. Although only approximate estimates of N mineralisation were at hand, the models generally behave expectedly poor. Only one model-DAISY-out of 16 involved in the comparison uses an explicit microbial biomass sub-model including microbial growth, decline and maintenance terms. So DAISY is the only model coupling C and N cycles. But what is true for an individual model describing the C and N transformation of a lab incubation experiment seems to be valid for most of the complex simulation work on the C and N regimes: this model was said to be overparameterized with respect to the available data.  相似文献   
194.
The fluxes of NO and NO2 between wheat canopy monoliths and the atmosphere were investigated with the dynamic chamber technique. For this purpose monoliths were dug out at different plant growth stages from a field site, transported to the institute, and placed in an environmental growth chamber. The wheat canopy monoliths were exposed over a period of four days to the average ratios of atmospheric NO2 and NO measured at the field site, i.e. NO2 concentration of about 18 mL L-1 plus NO concentration lower than 0.5 nL L-1. Under these conditions NO emission into the atmosphere and NO2 deposition into canopy monoliths was observed. Both fluxes showed diurnal variation with maximum rates during the light and minimum rates during darkness. NO2 fluxes correlated with soil temperature as well as with light intensity. NO fluxes correlated with soil temperature but not with light intensity. From the investigation performed the diurnal variation of the NO and NO2 compensation points, the maximum rates of NO and NO2 emission, and the total resistances of NO and NO2 fluxes were calculated. Under the assumption that the measured data are representative for the whole vegetation period, annual fluxes of NO and NO2 were estimated. Annual NO emission into the atmosphere amounted to 87 mg N m-2 y-1 (0.87 kg ha-1 y-1), annual NO2 deposition into canopy monoliths amounted to 1273 mg N m-2 y-1 (12.73 kg ha-1 y-1). Apparently, the uptake of atmospheric nitrogen by the wheat field from NO2 deposition is about 15 times higher than the loss of nitrogen from NO emission. It can therefore be assumed that even in rural areas wheat fields are a considerable sink for atmospheric nitrogen. The annual sink strength estimated in the present study is ca. 12 kg N ha-1 y-1. The possible origin of the NO emitted and the fate of atmospheric NO2 taken up by the wheat canopy monoliths are discussed.Preliminary results of this paper were presented at the Joint Workshop COST 611/Working Party 3 and EUROTRAC in Delft, The Netherlands (Ludwig et al., 1991).  相似文献   
195.
According to morphologically based classification systems, actinorhizal plants, engaged in nitrogen-fixing symbioses with Frankia bacteria, are considered to be only distantly related. However, recent phylogenetic analyses of seed plants based on chloroplast rbcL gene sequences have suggested closer relationships among actinorhizal plants. A more thorough sampling of chloroplast rbcL gene sequences from actinorhizal plants and their nonsymbiotic close relatives was conducted in an effort to better understand the phylogenetic relationships of these plants, and ultimately, to assess the homology of the different actinorhizal symbioses. Sequence data from 70 taxa were analyzed using parsimony analysis. Strict consensus trees based on 24 equally parsimonious trees revealed evolutionary divergence between groups of actinorhizal species suggesting that not all symbioses are homologous. The arrangement of actinorhizal species, interspersed with nonactinorhizal taxa, is suggestive of multiple origins of the actinorhizal symbiosis. Morphological and anatomical characteristics of nodules from different actinorhizal hosts were mapped onto the rbclL-based consensus tree to further assess homology among rbcL-based actinorhizal groups. The morphological and anatomical features provide additional support for the rbcL-based groupings, and thus, together, suggest that actinorhizal symbioses have originated more than once in evolutionary history.  相似文献   
196.
The effect of NaCI stress on the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH) and glutamate synthase (GOGAT) in callus lines ofVigna radiata which differ in salt resistance, was studied at weekly intervals upto 28 d of growth. After 28 d, the NaCI resistant callus (selected at 300 mM NaCI) at NaCI concentrations higher than 200 mM maintained higher NR activity than non-selected line. NaCI stress also affects aminating and deaminating activities of GDH. The NADH-GDH activity in the presence of NaCI was higher in the resistant than non-selected line. On the other hand, NAD-GDH activity in both the lines was completely inhibited after 7 d of growth. The increased activity of NADH-GDH in resistant calli may play a vital role in protecting the cells from toxic effect of increased endogenous level of ammonia which probably accumulates due to efficient NO3 reduction. NADH-GOGAT activity was found to decrease under salt stress in both the callus lines. Nitrogen assimilation in salt-resistant calli under salt stress was found to be characterized by high NR and NADH-GDH activities, concomitantly with low GOGAT activity. The authors are grateful to DST and CSIR for financial assistance.  相似文献   
197.
Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacteriumRhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) fromR. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase inR. rubrum andRhizobium meliloti and undefined proteins inStreptomyces griseus andPseudomonas maltophila.  相似文献   
198.
Gibberella fujikuroi (Fusarium moniliforme) is a complex group of plant pathogens. Some strains produce gibberellic acid and other gibberellins that promote growth and regulate various stages in plant development.The paper describes the research effort directed to development of genetic tools for this species. Furthermore the main features of the gibberellin biosynthetic pathway as established in Gibberella are described.Abbreviations AMO 1618 2-isopropyl-4-(trimethylammonium chloride)-5-methylphenylpiperidine-1-carboxylate - hydroxykaurenoic acid ent-kaur-16-en-7-ol-19-oic acid - kaurenal ent-kaur-16-en-19-al - kaurene ent-kaur-16-ene - kaurenoic acid ent-kaur-16-en-19-oic acid - kaurenol ent-kaur-16-en-19-ol - paclobutrazol 1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - pefurazoate pent-4-enyl-N-furfuryl-N-imidazol-1-ylcarbonyl-DL-homoa laninate - tetcyclacis 5-(4-chlorophenyl)-3,4,5,9,10-pentaazatetracyclo-5,4,102.6,O8.11-dodeca-3,9-diene - triarimol -(2,4-dichlorophenyl)--phenyl-5-pyrimidine methyl alcohol  相似文献   
199.
200.
Knuuttila  S.  Pietiläinen  O. P.  Kauppi  L. 《Hydrobiologia》1994,275(1):359-369
The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号