首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19358篇
  免费   1016篇
  国内免费   2919篇
  23293篇
  2024年   51篇
  2023年   249篇
  2022年   387篇
  2021年   483篇
  2020年   465篇
  2019年   634篇
  2018年   502篇
  2017年   537篇
  2016年   586篇
  2015年   722篇
  2014年   930篇
  2013年   1204篇
  2012年   827篇
  2011年   943篇
  2010年   794篇
  2009年   1083篇
  2008年   1179篇
  2007年   1264篇
  2006年   1159篇
  2005年   1171篇
  2004年   1038篇
  2003年   1004篇
  2002年   803篇
  2001年   665篇
  2000年   543篇
  1999年   508篇
  1998年   542篇
  1997年   410篇
  1996年   405篇
  1995年   400篇
  1994年   347篇
  1993年   260篇
  1992年   252篇
  1991年   198篇
  1990年   162篇
  1989年   116篇
  1988年   138篇
  1987年   93篇
  1986年   57篇
  1985年   55篇
  1984年   43篇
  1983年   23篇
  1982年   24篇
  1981年   12篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   1篇
  1976年   3篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
A genetic locus controlling the electrophoretic mobility of a methylglyoxal dehydrogenase (EC 1.2.1.23) in the rat is described. The locus, designatedMgd1, is expressed in liver and kidney. Inbred rat strains have fixed either alleleMgd1 a or alleleMgd1 b . Codominant expression is observed in heterozygotes, providing evidence for a tetrameric enzyme structure. Backcross progenies showed the expected 1:1 segregation ratio, and there is evidence thatMgd1 is linked toPep3 andFh1 on chromosome 13. There is also evidence for two additional methylglyoxal dehydrogenases:Mgd2, present in liver and kidney, andMgd3, present only in heart.Supported by the Deutsche Forschungsgemeinschaft (Grant Be 352/18-1).  相似文献   
142.
143.
144.
Plant defence systems induced by ozone   总被引:29,自引:9,他引:20  
Recent advances in the understanding of the molecular basis of plant response to ozone attack are reviewed. Plants grown in elevated atmospheric ozone are known to undergo several biochemical changes before any actual damage can be detected. These reactions include increases in the activities of enzymes associated with general plant defence mechanisms. Ozone exposure often causes a surge in the production of the plant hormone ethylene, as well as changes in polyamine metabolism and increases in the activities of several phenylpropanoid and flavonoid pathway enzymes. The activities of superoxide dismutase and peroxidases that protect cells from the oxidative damage caused by hydroxyl radicals, H2O2 and superoxides also increase. However, ozone-induced changes in plant cells at the gene level are almost unknown. The limited data available suggest close similarities between ozone-induced and pathogen-induced defence responses in plants. Several general defence genes that have been cloned in other studies will soon be applied to studies of gene expression in ozone-exposed plants. The use of molecular biological tools in ozone research should enable the development of highly specific and sensitive molecular markers for biomonitoring ozone-induced injuries in plants.  相似文献   
145.
146.
The unicellular cyanobacterium Synechococcus sp. PCC 7942 has three psbA genes encoding two different forms of the photosystem II reaction centre protein D1 (D1:1 and D1:2). The level of expression of these psbA genes and the synthesis of D1:1 and D1:2 are strongly regulated under varying light conditions. In order to better understand the regulatory mechanisms underlying these processes, we have constructed a strain of Synechococcus sp. PCC 7942 capable of over-producing psbA mRNA and D1 protein. In this study, we describe the over-expression of D1:1 using a tac-hybrid promoter in front of the psbAI gene in combination with lacI Q repressor system. Over-production of D1:1 was induced by growing cells for 12 h at 50 mol photons m-2 s-1 in the presence of 40 or 80 g/ml IPTG. The amount of psbAI mRNA and that of D1:1 protein in cells grown with IPTG was three times and two times higher, respectively. A higher concentration of IPTG (i.e., 150 g/ml) did not further increase the production of the psbAI message or D1:1. The over-production of D1:1 caused a decrease in the level of D1:2 synthesised, resulting in most PSII reaction centres containing D1:1. However, the over-production of D1:1 had no effect on the pigment composition (chlorophyll a or phycocyanin/number of cells) or the light-saturated rate of photosynthesis. This and the fact that the total amounts of D1 and D2 proteins were not affected by IPTG suggest that the number of PSII centres within the membranes remained unchanged. From these results, we conclude that expression of psbAI can be regulated by using the tac promoter and lacI Q system. However, the accumulation of D1:1 protein into the membrane is regulated by the number of PSII centres.  相似文献   
147.
A genomic clone for the cyc07 gene, which is expressed specifically at the S phase during the cell cycle in synchronous cultures of periwinkle (Catharanthus roseus) cells, was isolated. Determination of the nucleotide sequence of the clone revealed that the cyc07 gene consists of seven exons separated by six introns. Genomic Southern analysis indicated that the cyc07 gene is present as a single copy per haploid genome in periwinkle. Expression of related genes was detected in a wide range of other plants. Transgenic Arabidopsis plants were generated that expressed the gene for -glucuronidase (GUS) under the control of the promoter of the cyc07 gene. The tissue-specific pattern of expression directed by the promoter was investigated by analysis of GUS activity. Histochemical tests demonstrated that 589 bp of the 5-upstream sequence of the cyc07 gene could direct specifical expression of the GUS reporter gene in meristematic tissues in transgenic plants. The spatial pattern of expression directed by the promoter was closely correlated with meristematic activity and cell proliferation, suggesting an association between the function of the cyc07 gene and cell proliferation.  相似文献   
148.
149.
150.
Conditions for maximising transient expression of GUS in leaf mesophyll protoplasts of Arabidopsis thaliana ecotype C24 were investigated. It was found that the factors most influencing expression levels, with optimum levels in parenthesis, were plasmid DNA quantity (100 g per 5 × 105 protoplasts), inclusion of carrier DNA (50 g), PEG pH and amount (pH above 6, and total PEG concentration at least 9% w/w) and the topological form of the DNA. Linearised plasmid DNA with long flanking sequences 3 and 5 to the marker gene yielded the highest levels of GUS expression.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - MU methylumbelliferone - PEG polyethylene glycol - X-gluc 5-bromo-4-chloro-3-indolyl--glucuronic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号