首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19295篇
  免费   1004篇
  国内免费   2908篇
  2024年   35篇
  2023年   247篇
  2022年   324篇
  2021年   483篇
  2020年   463篇
  2019年   634篇
  2018年   502篇
  2017年   534篇
  2016年   586篇
  2015年   722篇
  2014年   930篇
  2013年   1204篇
  2012年   827篇
  2011年   943篇
  2010年   794篇
  2009年   1083篇
  2008年   1179篇
  2007年   1264篇
  2006年   1159篇
  2005年   1171篇
  2004年   1038篇
  2003年   1004篇
  2002年   803篇
  2001年   665篇
  2000年   543篇
  1999年   508篇
  1998年   542篇
  1997年   410篇
  1996年   405篇
  1995年   400篇
  1994年   347篇
  1993年   260篇
  1992年   252篇
  1991年   198篇
  1990年   162篇
  1989年   116篇
  1988年   138篇
  1987年   93篇
  1986年   57篇
  1985年   55篇
  1984年   43篇
  1983年   23篇
  1982年   24篇
  1981年   12篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   1篇
  1976年   3篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
The plant pathogenic single‐strand DNA‐containing geminiviruses have been the recent focus of intense investigation, owing both to their agronomic importance and to their potential as vectors for the expression of foreign genes in plants. Molecular genetic studies have provided detailed information on the genomic organization of many of these viruses. A greater genetic complexity has been demonstrated among the members of this viral family than had previously been suspected, as well as an apparently rapid rate of evolution of genetic diversity. We now recognize fundamental differences in the genome structure and organization of the whitefly‐ and leafhopper‐transmitted viruses, as well as among those geminiviruses infecting dicotyledonous or monocotyledonous hosts. This knowledge has provided new insights into the evolution of these viruses. The viral genes involved in replication and in systemic movement in the plant have been defined, and viral origins for single‐strand (ss) and double‐strand (ds) DNA replication have been mapped to small nucleotide regions. With the structural features of the viral genomes now well defined, current efforts are focused on elucidating the molecular aspects of viral gene regulation and interactions with host‐cell components that lead to the production of disease. Recent progress in determining the mechanism of replication and systemic movement and the contributions of these to symptom and disease development are discussed in the context of the potential for genetically engineering disease‐resistant plants.  相似文献   
112.
Radiolabelled calmodulin has previously been used to screen cDNA expression libraries to isolate calmodulin-binding proteins. We have modified this technique for the isolation of plant calmodulin-binding proteins. [35S]-methionine was used instead of the inorganic [35S]-sulfate, or125I used in previous methods. In addition, theE. coli pET expression system was chosen to obtain high levels of recombinant calmodulin at the time of labelling. The procedure thus takes into account both the specific activity of the probe and the amount of protein necessary for screening a large number of filters. Here we describe in detail a procedure for the production and purification of [35S]-recombinant calmodulin and the use of the radiolabelled protein as a probe to screen plant cDNA expression libraries. The [35S]-labeled calmodulin probe easily detects the λICM-1 phage encoding a partial mouse calmodulin-dependent protein kinase II that was previously isolated using a [125I]-calmodulin probe (Sikela and Hahn, 1987). Subsequently, a tobacco root cDNA expression library was screened and a positive clone encoding a calcium-dependent calmodulin-binding protein was isolated.  相似文献   
113.
Summary Northern blot analysis of glucose-grown and starch-grown mycelia of Aspergillus oryzae R11340 was conducted using the cloned Taka-amylase A (TAA) gene as a probe. The amount of mRNA homologous to the TAA gene was increased when this fungus was grown with starch as a sole carbon source. In order to analyze the induction mechanism, we inserted the Escherichia coli uidA gene encoding -glucuronidase (GUS) downstream of the TAA promoter and introduced the resultant fusion gene into the A. oryzae genome. Production of a functional GUS protein was induced by starch, but not by glucose. When the effects of various sugars on expression of the fusion gene were examined, the results suggested that the expression of the fusion gene was under control of the TAA gene promoter.  相似文献   
114.
Summary The mechanism of anaerobic regulation of synthesis of colicins E1, E2, E3, K and D was studied. It was found that anaerobiosis significantly increases expression of the genes for colicins E1, E2, E3, K, and D. Experiments with novobiocin (a DNA gyrase inhibitor) showed that colicin synthesis in minicells and derepressed colicin synthesis in cells are dramatically reduced by relaxation of DNA supercoiling. A good correlation was observed between the levels of colicin synthesis and plasmid DNA supercoiling and the degree of aeration of the cultures. Thus, the regulation of colicin gene expression in response to a change in aeration appears to be mediated by environmentally induced variations in DNA supercoiling.  相似文献   
115.
Summary Hybrid (1-3,1-4)--glucanase genes were constructed by extension of overlapping segments of the (1-3,1-4)--glucanase genes from Bacillus amyloliquefaciens and B. macerans generated by the polymerase chain reaction (PCR). Four hybrid genes were expressed in Escherichia coli cells. The mature hybrid enzymes contain a 16, 36, 78, or 152 amino acid N-terminal sequence derived from B. amyloliquefaciens (1-3,1-4)--glucanase followed by a C-terminal segment derived from B. macerans (1-3,1-4)--glucanase. Biochemical characterization of parental and hybrid enzymes shows a significant increase in thermostability of three of the hybrid enzymes when exposed to an acidic environment thus combining two important enzyme characteristics within the same molecule. At pH 4.1, 85%-95% of the initial activity was retained after 1 h at 65° C in contrast to 5% and 0% for the parental enzymes from B. amyloliquefaciens and B. macerans. After 60 min incubation at 70° C, pH 6.0, the parental enzymes retained 5% or less of the initial activity whilst one of the hybrids still exhibited 90% of the initial activity. Of the parental enzymes B. macerans (1-3,1-4)--glucanase had the lower specific activity while the hybrid enzymes exhibited specific activities that were 1.5- to 3-fold higher. These experimental results demonstrate that exchange of homologous gene segments from different species may be a useful technique for obtaining new and improved versions of biologically active proteins.Abbreviations AMY mature form of Bacillus amyloliquefaciens (1-3,1-4)--glucanase; - MAC mature form of B. macerans (1-3,1-4)--glucanase - SUB mature form of B. subtilis (1-3,1-4)--glucanase - H(A16-M), H(A36-M), H(A78-M), H(A107-M), H(A152-M) mature forms of hybrid enzymes having 16, 36, 78, 107, 152 N-terminal amino acids, respectively, derived from AMY with the remaining amino acids derived from MAC  相似文献   
116.
117.
Summary A major pathogen of potato plants (Solanum tuberosum) is the potato cyst nematode (Globodera spp.), which induces localized redifferentiation of a limited number of host cells to form a specialized feeding-site termed the syncytium. A novel strategy utilizing the polymerase chain reaction (PCR) was employed to construct a cDNA library from dissected potato roots highly enriched in syncytial material. The library was differentially screened with cDNA probes derived from the infected root tissue from a compatible interaction and from healthy root tissue. Characterization of one gene identified by the library screen indicated an expression pattern that correlated with events in the immediate vicinity of the pathogen after syncytial establishment. The strategy for library construction and screening could be applicable to the study of gene expression in any plant-pathogen interaction in which the limited supply of cells at the interface of the two organisms precludes a more traditional approach.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号