首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21476篇
  免费   2074篇
  国内免费   2710篇
  2024年   36篇
  2023年   475篇
  2022年   478篇
  2021年   752篇
  2020年   883篇
  2019年   1055篇
  2018年   903篇
  2017年   1042篇
  2016年   971篇
  2015年   915篇
  2014年   1150篇
  2013年   2020篇
  2012年   911篇
  2011年   1097篇
  2010年   926篇
  2009年   1196篇
  2008年   1301篇
  2007年   1195篇
  2006年   1081篇
  2005年   891篇
  2004年   813篇
  2003年   709篇
  2002年   587篇
  2001年   524篇
  2000年   506篇
  1999年   449篇
  1998年   362篇
  1997年   305篇
  1996年   297篇
  1995年   272篇
  1994年   266篇
  1993年   215篇
  1992年   206篇
  1991年   193篇
  1990年   155篇
  1989年   141篇
  1988年   112篇
  1987年   112篇
  1986年   113篇
  1985年   82篇
  1984年   89篇
  1983年   76篇
  1982年   110篇
  1981年   61篇
  1980年   71篇
  1979年   42篇
  1978年   37篇
  1977年   16篇
  1976年   19篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 875 毫秒
971.
Abstract

Conserved protein sequence segments are commonly believed to correspond to functional sites in the protein sequence. A novel approach is proposed to profile the changing degree of conservation along the protein sequence, by evaluating the occurrence frequencies of all short oligopeptides of the given sequence in a large proteome database. Thus, a protein sequence conservation profile can be plotted for every protein. The profile indicates where along the sequences the potential functional (conserved) sites are located. The corresponding oligopeptides belonging to the sites are very frequent across many prokaryotic species. Analysis of a representative set of such profiles reveals a common feature of all examined proteins: they consist of sequence modules represented by the peaks of conservation. Typical size of the modules (peak-to-peak distance) is 25–30 amino acid residues.  相似文献   
972.
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.  相似文献   
973.
CK1δ (Casein kinase I isoform delta) is a member of CK1 kinase family protein that mediates neurite outgrowth and the function as brain-specific microtubule-associated protein. ATP binding kinase domain of CK1δ is essential for regulating several key cell cycle signal transduction pathways. Mutation in CK1δ protein is reported to cause cancers and affects normal brain development. S97C mutation in kinase domain of CK1δ protein has been involved to induce breast cancer and ductal carcinoma. We performed molecular docking studies to examine the effect of this mutation on its ATP-binding affinity. Further, we conducted molecular dynamics simulations to understand the structural consequences of S97C mutation over the kinase domain of CK1δ protein. Docking results indicated the loss of ATP-binding affinity of mutant structure, which were further rationalized by molecular dynamics simulations, where a notable loss in 3-D conformation of CK1δ kinase domain was observed in mutant as compared to native. Our results explained the underlying molecular mechanism behind the observed cancer associated phenotype caused by S97C mutation in CK1δ protein.  相似文献   
974.
Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is ?60.8 kJ mol?1 in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is ?96.3 kJ mol?1 in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.  相似文献   
975.
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.  相似文献   
976.
977.
Biotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity.  相似文献   
978.
Abstract

The creation of a small opening called the fusion pore is a necessary prerequisite for neurotransmitter release from synaptic vesicles. It is known that high intensity electric fields can create pores in vesicles by a process called electroporation. Due to the presence of charged phosphatidylserine (PS) molecules on the inner leaflet of the cell membrane, an electric field that is strong enough to cause electroporation of a synaptic vesicle might be present. It was shown by K. Rosenheck [K. Rosenheck. Biophys J 75, 1237–1243 (1998)] that in a planar geometry, fields sufficient to cause electroporation can occur at intermembrane separations of less than ~3 nm. It is frequently found, however, that the cell membrane is not planar but caves inward at the locations where a vesicle is close to it. Indentation of the cell membrane in the fusion region was modelled as a hemisphere and a theoretical study of the electric field in the vicinity of the cell membrane taking into account the screening effect of dissolved ions in the cytoplasm was performed. It was discovered that fields crossing the electroporation threshold occurred at a distance of 2 nm or less, supporting the claim that electroporation could be a possible mechanism for fusion pore formation.  相似文献   
979.
The theoretical drug infusion rates requisite to obtain a constant pharmacologic effect are determined taking into account chronopharmacologic phenomena. The introduction of chronopharmacology into pharmacokinetic theory leads to a clocktime-dependent infusion rate. The infusion modulation depends both on type of chronophenomenon, chronopharmacokinetics or chronestesy, and plasma clearance rate of the drug. In the presence of chronestesy of a biosystem the pharmacologic effect can be maintained constant only when plasma drug clearance is fast enough to allow an adequate modulation of the plasma drug concentration. Although the established equations proceed from theoretical concept they could be useful for programming drug delivery systems.  相似文献   
980.
《Chronobiology international》2013,30(10):1358-1365
In adolescence, the circadian preference shifts toward eveningness orientation. Eveningness seems to be negatively correlated with quality of life. The present study investigates influencing factors of this association and proposes a model for the mediating effects of sleep, sleep-related cognitions, and self-efficacy according to chronotype. The sample comprised N?=?280 adolescents (172 girls) aged 14–16 yrs (mean?=?15.19, SD?=?.76). Circadian preference, health-related quality of life (HRQoL), sleep disturbances, sleep-related dysfunctional cognitions, and general perceived self-efficacy were assessed online. Morning-orientated adolescents reported significantly higher HRQoL and less insomnia symptoms compared with evening-oriented chronotypes. In the total sample, insomnia symptoms mediated the relationship of chronotype and HRQoL. The strongest predictor of HRQoL in evening types was the degree of sleep-related dysfunctional cognitions. HRQoL in morning types was most strongly predicted by general self-efficacy, i.e., the global confidence in coping abilities. The findings support a negative relationship of eveningness and HRQoL in adolescents. Insomnia symptoms were identified to be mediating factors in this relationship. The influence of the mediating factors on HRQoL differed between morning and evening types. The model provides implications of how to enhance HRQoL in adolescents according to their circadian preference. (Author correspondence: )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号