首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4353篇
  免费   513篇
  国内免费   93篇
  2024年   9篇
  2023年   151篇
  2022年   150篇
  2021年   360篇
  2020年   316篇
  2019年   287篇
  2018年   292篇
  2017年   198篇
  2016年   194篇
  2015年   228篇
  2014年   377篇
  2013年   388篇
  2012年   261篇
  2011年   260篇
  2010年   135篇
  2009年   173篇
  2008年   194篇
  2007年   160篇
  2006年   152篇
  2005年   127篇
  2004年   81篇
  2003年   86篇
  2002年   65篇
  2001年   53篇
  2000年   25篇
  1999年   39篇
  1998年   30篇
  1997年   27篇
  1996年   24篇
  1995年   19篇
  1994年   30篇
  1993年   13篇
  1992年   13篇
  1991年   6篇
  1990年   8篇
  1989年   10篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1958年   1篇
排序方式: 共有4959条查询结果,搜索用时 15 毫秒
101.
In this study, we report for the first time a one‐pot approach for the synthesis of new CdSeTeS quaternary‐alloyed quantum dots (QDs) in aqueous phase by microwave irradiation. CdCl2 was used as a Cd precursor during synthesis, NaHTe and NaHSe were used as Te and Se precursors and mercaptopropionic acid (MPA) was used as a stabilizer and source of sulfur. A series of quaternary‐alloyed QDs of different sizes were prepared. CdSeTeS QDs exhibited a wide emission range from 549 to 709 nm and high quantum yield (QY) up to 57.7 %. Most importantly, the quaternary‐alloyed QDs possessed significantly long fluorescence lifetimes > 100 ns as well as excellent photostability. Results of high‐resolution transmission electron microscopy (HRTEM), energy dispersive X‐ray spectroscopy (EDX) and powder X‐ray diffraction (XRD) spectroscopy showed that the nanocrystals possessed a quaternary alloy structure with good crystallinity. Fluorescence correlation spectroscopy (FCS) showed that QDs possessed good water solubility and monodispersity in aqueous solution. Furthermore, CdSeTeS QDs were modified with alpha‐thio‐omega‐carboxy poly(ethylene glycol) (HS‐PEG‐COOH) and the modified QDs were linked to anti‐epidermal growth factor receptor (EGFR) antibodies. QDs with the EGFR antibodies as labeling probes were successfully applied to targeted imaging for EGFR on the surface of SiHa cervical cancer cells. We believe that CdSeTeS QDs can become useful probes for in vivo targeted imaging and clinical diagnosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
102.
Background aimsThere is an urgent need for novel therapeutic strategies for relapsed ovarian cancer. Dramatic clinical anti-tumor effects have been observed with interleukin (IL)-2 activated natural killer (NK) cells; however, intravenous delivery of NK cells in patients with ovarian cancer has not been successful in ameliorating disease. We investigated in vivo engraftment of intraperitoneally (IP) delivered NK cells in an ovarian cancer xenograft model to determine if delivery mode can affect tumor cell killing and circumvent lack of NK cell expansion.MethodsAn ovarian cancer xenograft mouse model was established to evaluate efficacy of IP-delivered NK cells. Tumor burden was monitored by bioluminescent imaging of luciferase-expressing ovarian cancer cells. NK cell persistence, tumor burden and NK cell trafficking were evaluated. Transplanted NK cells were evaluated by flow cytometry and cytotoxicity assays.ResultsIP delivery of human NK cells plus cytokines led to high levels of circulating NK and was effective in clearing intraperitoneal ovarian cancer burden in xenografted mice. NK cells remained within the peritoneal cavity 54 days after injection and had markers of maturation. Additionally, surviving NK cells were able to kill ovarian cancer cells at a rate similar to pre-infusion levels, supporting that in vivo functionality of human NK cells can be maintained after IP infusion.ConclusionsIP delivery of NK cells leads to stable engraftment and antitumor response in an ovarian cancer xenograft model. These data support further pre-clinical and clinical evaluation of IP delivery of allogeneic NK cells in ovarian cancer.  相似文献   
103.
Aneuploidy and chromosome instability (CIN) are hallmarks of the vast majority of solid tumors. However, the origins of aneuploid cells are unknown. The aim of this study is to improve our understanding of how aneuploidy and/or CIN arise and of karyotype evolution in cancer cells. By using fluorescence in situ hybridization (FISH) on cells after long-term live cell imaging, we demonstrated that most (> 90%) of the newly generated aneuploid cells resulted from multipolar divisions. Multipolar division occurred in mononucleated and binucleated parental cells, resulting in variation of chromosome compositions in daughter cells. These karyotypes can have the same chromosome number as their mother clone or lack a copy of certain chromosomes. Interestingly, daughter cells that lost a chromosome were observed to survive and form clones with shorter cell cycle duration. In our model of cancer cell evolution, the rapid proliferation of daughter cells from multipolar mitosis promotes colonal evolution in colorectal cancer cells.  相似文献   
104.
Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative breast cancer (MDA-MB-231). The inhibition is selective for these isoforms, as documented by experiments with purified HK I and II as well as with cell lysates. Measurements of 18F-fluoro-deoxyglycose uptake document that it is dose- and time-dependent and powerful enough to virtually abolish glucose consumption despite unchanged availability of membrane glucose transporters. The profound energetic imbalance activates phosphorylation and is subsequently followed by cell death. More importantly, the “in vivo” relevance of this effect is confirmed by studies of orthotopic xenografts of MDA-MB-231 cells in athymic (nu/nu) mice. Administration of high drug doses after tumor development caused an evident tumor necrosis in a time as short as 48 h. On the other hand, 1 mo metformin treatment markedly reduced cancer glucose consumption and growth. Taken together, our results strongly suggest that HK inhibition contributes to metformin therapeutic and preventive potential in breast cancer.  相似文献   
105.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA.Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.  相似文献   
106.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.  相似文献   
107.
Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies.Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration.Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented.  相似文献   
108.
Congenital heart disease (CHD) is the most frequent noninfectious cause of death at birth. The incidence of CHD ranges from 4 to 50/1,000 births (Disease and injury regional estimates, World Health Organization, 2004). Surgeries that often compromise the quality of life are required to correct heart defects, reminding us of the importance of finding the causes of CHD. Mutant mouse models and live imaging technology have become essential tools to study the etiology of this disease. Although advanced methods allow live imaging of abnormal hearts in embryos, the physiological and hemodynamic states of the latter are often compromised due to surgical and/or lengthy procedures. Noninvasive ultrasound imaging, however, can be used without surgically exposing the embryos, thereby maintaining their physiology. Herein, we use simple M-mode ultrasound to assess heart rates of embryos at E18.5 in utero. The detection of abnormal heart rates is indeed a good indicator of dysfunction of the heart and thus constitutes a first step in the identification of developmental defects that may lead to heart failure.  相似文献   
109.
Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains.  相似文献   
110.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization.This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号