首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4638篇
  免费   628篇
  国内免费   1386篇
  2024年   15篇
  2023年   217篇
  2022年   227篇
  2021年   291篇
  2020年   296篇
  2019年   320篇
  2018年   307篇
  2017年   281篇
  2016年   277篇
  2015年   240篇
  2014年   298篇
  2013年   456篇
  2012年   239篇
  2011年   269篇
  2010年   226篇
  2009年   261篇
  2008年   235篇
  2007年   268篇
  2006年   238篇
  2005年   195篇
  2004年   172篇
  2003年   154篇
  2002年   127篇
  2001年   121篇
  2000年   110篇
  1999年   79篇
  1998年   69篇
  1997年   70篇
  1996年   72篇
  1995年   73篇
  1994年   62篇
  1993年   59篇
  1992年   42篇
  1991年   43篇
  1990年   39篇
  1989年   25篇
  1988年   21篇
  1987年   22篇
  1986年   19篇
  1985年   26篇
  1984年   22篇
  1983年   9篇
  1982年   18篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   8篇
  1976年   4篇
  1975年   6篇
排序方式: 共有6652条查询结果,搜索用时 31 毫秒
121.
An obligatory anaerobic bacterium was isolated from a mediator-less microbial fuel cell using starch processing wastewater as the fuel and designated as EG3. The isolate was Gram-positive, motile and rod (2.8–3.0 μm long, 0.5–0.6 μm wide). The partial 16S rRNA gene sequence and analysis of the cellular fatty acids profile suggested that EG3 clusters with Clostridium sub-phylum and exhibited the highest similarity (98%) with Clostridium butyricum. The temperature and pH optimum for growth were 37°C and 7.0, respectively. The major products of glucose and glucose/Fe(O)OH metabolism were lactate, formate, butyrate, acetate, CO2and H2. Growth was faster at the initial phase and the cell yield was higher when the medium was supplemented with Fe(O)OH than without Fe(O)OH. These results suggest that Fe(III) ion is utilised as an electron sink. Cyclic voltammetry showed that Clostridium butyricum EG3 cells were electrochemically active. It is a novel characteristic of strict anaerobic Gram-positive bacteria.  相似文献   
122.
123.
Genetically modified cells of Pseudomonas fluorescens, chromosomally marked with genes for bioluminescence, were inoculated into sterile soil microcosms. During incubation for 90 days, viable cell concentration did not change significantly but light output, measured by luminometry, decreased, indicating reduced metabolic activity due to lack of substrates. Amendment with nutrients resulted in parallel increases in both luminescence and dehydrogenase activity. Luminometry therefore enables rapid monitoring of the activity of populations of luminescence-marked microbial inocula in the soil, with greater sensitivity and selectivity than traditional techniques.  相似文献   
124.
125.
Two different kinds of bioprocess, ethanol fermentation and subsequent microbial esterification, were coupled using Issatchenkia terricola IFO 0933 in an interface bioreactor. The strain produced ethyl decanoate (Et-DA) by esterification of exogenous decanoic acid (DA) with ethanol produced via fermentation. The efficiency of the new coupling system depended on the concentration of glucose in a carrier and DA in an organic phase (decane) in an agar plate interface bioreactor. Optimum glucose content and DA concentration were 4% and 29 mM, respectively.  相似文献   
126.
A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.  相似文献   
127.
The conflict between cultivated land protection and economic development has become increasingly acute in recent years. Despite, intensive researches made on this conflict, little attention has been paid to the spatial correlation of variables. In view of this, the paper introduces the spatial panel regression model to estimate, and test whether the relationship between economic growth and cultivated land conversion conforms to Kuznets curve. Research results show that the area of converted cultivated land in China exhibits strong spatial auto-correlation; the spatial panel model with time effect and fixed effect is more stable and significant than conventional panel mode, and that the relationship between economic growth and cultivated land conversion agrees with the inverted U-shape of Kuznets curve, with inflection point occurring when average per capita GDP reaches ¥31330.93 (calculated at comparable price of 1999). On the basis of analysis, it is suggested that the government, with a view to developing economy alongside protecting cultivated land, should attach more importance to land use and planning in the future, pay more attention to the spatial correlation of cultivated land planning in adjacent areas and make greater efforts to increase the input–output ratio of land.  相似文献   
128.
The comparative growth and osmotic acclimation often culture strains of the marine benthic cyanobacterium Microcoleus chthonoplastes Thuret isolated from microbial mats in Germany, Spain, Egypt, the United States, Mexico, Chile, and Australia were investigated in salinities ranging from freshwater to twice seawater. All isolates showed a broad growth versus salinity response consistent with the dominance of this species in intertidal and hypersaline microbial communities. Growth optima, salinity preferences, and maximum growth rates differed for each isolate and could be related to the habitat from which they were isolated. This is most obvious when comparing strains from brackish habitats with those from a hypersaline lake. While the former isolates exhibited sharply pronounced growth optima under hyposaline conditions, cultures from the hypersaline environment grew best in salinity more than double seawater. The major low-molecular weight organic compounds present in all M. chthonoplastes strains were the carbohydrates glycosylglycerol and trehalose. This was proven by using 13C-nuclear magnetic resonance spectroscopy. Glycosylglycerol was synthesized and accumulated with increasing salinities, indicating its role as an osmolyte. In contrast, trehalose was present in relatively high concentrations under hyposaline conditions only. Differences in the patterns of growth versus salinity, as well as in those of osmotic acclimation among the M. chthonoplastes isolates, point to the development of different physiological ecotypes within the species.  相似文献   
129.
Rechargeable batteries based on MnO2 cathodes, able to operate in mild aqueous electrolytes, have attracted attention due to their appealing features for the design of low‐cost stationary energy storage devices. However, the charge/discharge mechanism of MnO2 in such media is still a matter of debate. Here, an in‐depth quantitative spectroelectrochemical analysis of MnO2 thin‐films provides a set of unrivaled mechanistic insights. A major finding is that charge storage occurs through the reversible two‐electron faradaic conversion of MnO2 into Mn2+ in the presence of a wide range of weak Brønsted acids, including the [Zn(H2O)6]2+ or [Mn(H2O)6]2+ complexes present in aqueous Zn/MnO2 batteries. Furthermore, it is shown that buffered electrolytes loaded with Mn2+ are ideal to achieve highly reversible conversion of MnO2 with both high gravimetric capacity and remarkably stable charging/discharging potentials. In the most favorable case, a record gravimetric capacity of 450 mA·h·g?1 is obtained at a high rate of 1.6 A·g?1, with a Coulombic efficiency close to 100% and a MnO2 utilization of 84%. Overall, the present results challenge the common view on MnO2 the charge storage mechanism in mild aqueous electrolytes and underline the benefit of buffered electrolytes for high‐performance rechargeable aqueous batteries.  相似文献   
130.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号