首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62672篇
  免费   4744篇
  国内免费   2011篇
  2023年   822篇
  2022年   862篇
  2021年   1737篇
  2020年   2143篇
  2019年   2998篇
  2018年   2377篇
  2017年   1671篇
  2016年   1671篇
  2015年   1867篇
  2014年   3665篇
  2013年   4513篇
  2012年   2825篇
  2011年   3685篇
  2010年   2771篇
  2009年   3000篇
  2008年   3242篇
  2007年   3161篇
  2006年   2703篇
  2005年   2511篇
  2004年   2256篇
  2003年   1908篇
  2002年   1684篇
  2001年   1141篇
  2000年   969篇
  1999年   1011篇
  1998年   895篇
  1997年   773篇
  1996年   727篇
  1995年   691篇
  1994年   684篇
  1993年   549篇
  1992年   518篇
  1991年   456篇
  1990年   336篇
  1989年   341篇
  1988年   278篇
  1987年   283篇
  1986年   237篇
  1985年   458篇
  1984年   759篇
  1983年   597篇
  1982年   618篇
  1981年   489篇
  1980年   474篇
  1979年   390篇
  1978年   295篇
  1977年   275篇
  1976年   273篇
  1975年   226篇
  1974年   201篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   
82.
83.
84.
85.
Genistein (GEN) has been previously shown to have a proapoptotic effect on cancer cells through a p53-dependent pathway, the mechanism of which remains unclear. One of its intracellular targets, APE1, protects against apoptosis under genotoxic stress and interacts with p53. In this current study, we explored the mechanism of the proapoptotic effect of GEN by examining the APE1–p53 protein–protein interaction. We initially showed that the p53 protein level was elevated in GEN-treated human non-small lung cancer A549 cells and cervical cancer HeLa cells. By examining both protein synthesis and degradation, we found that GEN enhances p53 intracellular stability by interfering with the interaction of APE1 and p53, which provided a plausible explanation for how GEN initiates apoptosis. Furthermore, we found that the interaction between APE1 and p53 is important for the degradation of p53 and is dependent on the redox domain of APE1 by utilizing the redox domain mutant APE1 C65A. Our data suggest that the degradation of wild-type p53 is blocked when the redox domain of APE1 is masked or interrupted. Based on this evidence, we hereby report a novel mechanism of p53 degradation through an APE1-mediated, redox-dependent pathway.  相似文献   
86.
《Process Biochemistry》2014,49(1):61-68
Cloning, over-expression, characterization and structural and functional analysis of two alkaline proteases from the newly isolated haloalkaliphilic bacteria: Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12 were carried out. The cloned protease genes were over-expressed in Escherichia coli within 6 h of the IPTG induction. The protease genes were sequenced and the sequence submitted to the GenBank with the accession numbers, HM219179 and HM219182. The recombinant proteases were active in the range of pH 8–11 and temperature 30–50 °C. The amino acid sequences of the alkaline proteases displayed hydrophobic character and stable configurations. The amino acids Asp 141, His 171 and Ser 324 formed the catalytic triad, while Ile, Leu and Ser were other amino acid moieties present in the active site. The characteristics of the recombinant proteases were compared and found to be similar to their native counterparts. On the basis of the in-silico analysis and inhibitor studies, the enzymes were confirmed as serine proteases. The study hold significance as only limited enzymes from the haloalkaliphilic bacteria have been cloned, sequenced and analyzed for the structure and function analysis.  相似文献   
87.
《Developmental cell》2022,57(14):1694-1711.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   
88.
The Rhynchosciara americana C3-22 gene is located in an amplified domain and is developmentally expressed. The aim of the present work was to identify intrinsically bent DNA sites in a segment containing the gene promoter and downstream sequence. The results indicated that this gene is flanked by intrinsically bent DNA sites. Three bent DNA sites (b?3, b?2, and b?1) were localized in the promoter, and one was localized downstream of the gene (b+1). These sites had helical parameters that confirmed the curved structure, as well as segments with left-handed superhelical writhe. In silico analysis of the promoters of four other insect genes, which encode secreted polypeptides, showed that they all had curved structures and similar helical parameters. Correlation with other results indicates that the detected intrinsically bent DNA sites that flank the C3-22 gene might be a consensus feature of the gene structure in the amplified domains.  相似文献   
89.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   
90.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号