首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62672篇
  免费   4744篇
  国内免费   2011篇
  2023年   822篇
  2022年   862篇
  2021年   1737篇
  2020年   2143篇
  2019年   2998篇
  2018年   2377篇
  2017年   1671篇
  2016年   1671篇
  2015年   1867篇
  2014年   3665篇
  2013年   4513篇
  2012年   2825篇
  2011年   3685篇
  2010年   2771篇
  2009年   3000篇
  2008年   3242篇
  2007年   3161篇
  2006年   2703篇
  2005年   2511篇
  2004年   2256篇
  2003年   1908篇
  2002年   1684篇
  2001年   1141篇
  2000年   969篇
  1999年   1011篇
  1998年   895篇
  1997年   773篇
  1996年   727篇
  1995年   691篇
  1994年   684篇
  1993年   549篇
  1992年   518篇
  1991年   456篇
  1990年   336篇
  1989年   341篇
  1988年   278篇
  1987年   283篇
  1986年   237篇
  1985年   458篇
  1984年   759篇
  1983年   597篇
  1982年   618篇
  1981年   489篇
  1980年   474篇
  1979年   390篇
  1978年   295篇
  1977年   275篇
  1976年   273篇
  1975年   226篇
  1974年   201篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
63.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
64.
A new assay procedure for phenol sulfotransferase which employs [35S]-3'-phosphoadenosine-5'-phosphosulfate as a sulfate donor and a variety of phenols as sulfate acceptors was developed. The appearance of the 35S-sulfated products or the disappearance of the [35S]-3'-phosphoadenosine-5'-phosphosulfate are determined simultaneously by chromatography of the assay incubation mixtures on Ecteola-cellulose columns, eluting with an NH4HCO3 step gradient. Various acidic, neutral, and basic phenols can be employed as substrates for phenol sulfotransferase using this procedure.  相似文献   
65.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLA cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluoroscence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with β-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the β-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   
66.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
67.
68.
The sensitivity of the fluorescent dye, 3,3′-diethylthiadicarbocyanine (DiS-C2(5)), was too low for the detection of membrane potential changes in rat small intestinal membrane vesicles. Only after adding LaCl3 or after fractionation of the intestinal membranes by free-flow electrophoresis could the dye be used to monitor electrogenic Na+-dependent transport systems. It is concluded that the response of this potential-sensitive dye is influenced by the negative surface charge density of the vesicles.  相似文献   
69.
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35.  相似文献   
70.
Recently, circular RNAs (circRNAs) are identified as a novel class of noncoding RNAs playing important roles in human malignant tumors. However, the regulatory function of circRNA in lung adenocarcinoma (LUAD) is still largely unknown. Present study aimed to explore the role of circ_0006427 in LUAD progression. Firstly, the downregulation of circ_0006427 in LUAD tissues and cell lines was revealed by microarray analysis and qRT-PCR analysis. And we also confirmed the circ_0006427 as a prognostic target in LUAD patients. Functionally, overexpression of circ_0006427 effectively suppressed cell proliferation, migration and invasion. Mechanistically, circ_0006427 was found to be predominantly located in the cytoplasm of LUCA cell, and was further revealed to positively regulate DKK1 in LUAD by sponging miR-6783–3p. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and western blot analysis revealed that circ_0006427 inactivated Wnt/β-catenin signaling pathway by upregulating DKK1. At last, rescue assays proved the function of circ_0006427/miR-6783–3p/DKK1 axis in LUAD progression. In conclusion, our study revealed that circ_0006427 suppressed lung adenocarcinoma progression through regulating miR-6783–3p/DKK1 axis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号