首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3558篇
  免费   379篇
  国内免费   460篇
  2024年   15篇
  2023年   148篇
  2022年   146篇
  2021年   226篇
  2020年   200篇
  2019年   220篇
  2018年   190篇
  2017年   167篇
  2016年   181篇
  2015年   174篇
  2014年   183篇
  2013年   294篇
  2012年   159篇
  2011年   157篇
  2010年   157篇
  2009年   155篇
  2008年   139篇
  2007年   153篇
  2006年   148篇
  2005年   151篇
  2004年   129篇
  2003年   118篇
  2002年   98篇
  2001年   73篇
  2000年   65篇
  1999年   55篇
  1998年   46篇
  1997年   51篇
  1996年   41篇
  1995年   46篇
  1994年   46篇
  1993年   31篇
  1992年   22篇
  1991年   35篇
  1990年   21篇
  1989年   14篇
  1988年   9篇
  1987年   18篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1983年   8篇
  1982年   13篇
  1981年   15篇
  1980年   8篇
  1979年   7篇
  1977年   4篇
  1976年   11篇
  1975年   9篇
  1974年   4篇
排序方式: 共有4397条查询结果,搜索用时 15 毫秒
991.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   
992.
Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium viscosity and hereby a decrease in mass transfer, especially oxygen transfer. The consequence was a decrease in DOT and the occurrence of a switch between fully aerobic conditions and oxygen-limited conditions. Metabolite quantification showed that polyols were the main metabolic products formed and represented up to 22% of the carbon consumed in oxygen-limited conditions. The polyol concentration and the polyol pattern depended strongly on the environmental conditions. This is due to a complex regulation of polyol production and to the fact that each polyol can fulfill different functions. In this study, erythritol, xylitol, and arabitol were produced as carbon storage compounds when the flux through the PP pathway exceeded the need in ribulose-5-phosphate for the biomass synthesis. Glycerol, erythritol, and xylitol seem to be involved in osmoregulation. Mannitol was produced when the catabolic reduction of charge was high. Its production involves the enzyme NAD-dependent mannitol-1-phosphate dehydrogenase and seems to be the main cytosolic route for the NADH reoxidation during oxygen limitation.  相似文献   
993.
To increase expression of lycopene synthetic genes crtE, crtB, crtI, and ipiHP1, the four exogenous genes were cloned into a high copy pTrc99A vector with a strong trc promoter. Recombinant Escherichia coli harboring pT-LYCm4 produced 17 mg/L of lycopene. The mevalonate lower pathway, composed of mvaK1, mvaK2, mvaD, and idi, was engineered to produce pSSN12Didi for an efficient supply of the lycopene building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Mevalonate was supplied as a substrate for the mevalonate lower pathway. Lycopene production in E. coli harboring pT-LYCm4 and pSSN12Didi with supplementation of 3.3 mM mevalonate was more than threefold greater than bacteria with pT-LYCm4 only. Lycopene production was dependent on mevalonate concentration supplied in the culture. Clump formation was observed as cells accumulated more lycopene. Further clumping was prevented by adding the surfactant Tween 80 0.5% (w/v), which also increased lycopene production and cell growth. When recombinant E. coli harboring pT-LYCm4 and pSSN12Didi was cultivated in 2YT medium containing 2% (w/v) glycerol as a carbon source, 6.6 mM mevalonate for the mevalonate lower pathway, and 0.5% (w/v) Tween 80 to prevent clump formation, lycopene production was 102 mg/L and 22 mg/g dry cell weight, and cell growth had an OD(600) value of 15 for 72 h.  相似文献   
994.
995.
996.
(1)
To investigate the role of photoperiod on the regulation of energy budgets and thermogenesis in Mongolian gerbils, body mass (BM), body fat mass (BFM), basal metabolic rate (BMR), nonshivering thermogenesis (NST), gross energy intake (GEI), mitochondrial cytochrome c oxidase (COX) activity and uncoupling protein1 (UCP1) content of brown adipose tissue (BAT), and serum tri-iodothyronine (T3), thyroxine (T4) and leptin levels were measured.  相似文献   
997.
We examined the influence of habitat size, growth opportunity, and the thermal conditions experienced during early development on the standard metabolic rate (SMR) of juvenile brown trout (Salmo trutta) from six natural populations to contrast the hypothesis of countergradient selection in metabolic rate. The study populations differed significantly in SMR. Population means for SMR changed in response to the temperature experienced during the yolk-absorption stage, when the risk of oxygen deficit increases and the vulnerability to hypoxia is highest. We also found a strong negative correlation between the temperature experienced during the first 2 months after yolk resorption and SMR, which supports the hypothesis of countergradient variation. Moreover, we detected a strong negative correlation between an index of growth opportunity and relative lipid content, suggesting that the risk of energy shortfall could be a major force in the evolution of storage strategies. Our results suggest that temperature can shape the evolution of metabolic rate during the yolk-absorptive stage or the first feeding stage, while energy storage levels may be more sensitive to thermal constraints acting on growth rates.  相似文献   
998.
以植物乳杆菌ATCC8014为试材,研究超高压对其能量代谢的影响。建立了用氯化碘硝基四唑紫测定ATCC8014的INT代谢还原活性的比色法。用比色法测定了超高压对ATCC8014的INT代谢还原活性与葡萄糖利用的影响。试验结果表明,150~250MPa作用15min在MRS琼脂培养基上随着压力的增大菌落数显著降低,INT代谢还原活性降低显著,葡萄糖的利用变化不明显;超过300MPa后,葡萄糖的利用才显著降低;400MPa处理15min,尽管在MRS琼脂培养基上菌落数低于检测限,INT代谢还原活性为0%,而葡萄糖的利用能力仍为对照组的56.1%,超高压作用下ATCC8014的灭活与INT代谢还原活性的降低的相关性较好。说明ATCC8014的细胞膜上参与葡萄糖的吸收和运输的酶、糖酵解的酶与调节系统比三羧酸循环的酶与调节系统较耐压。三羧酸循环比糖酵解对超高压敏感,三羧酸循环的抑制是超高压灭活其的重要原因,这为了探讨超高压杀灭植物乳杆菌的机制提供了一定的理论依据。  相似文献   
999.
Metabolic fingerprinting to discriminate diseases of stored carrots   总被引:1,自引:0,他引:1  
Volatile metabolites from headspace gas of carrot cv. Vita‐treat inoculated with water or four different pathogens Botrytis cinerea, Erwinia carotovora subsp. carotovora, Aspergillus niger and Fusarium avenaceum were profiled using gas chromatography and mass spectrometry to develop a technology to discriminate diseases. The inoculation of carrot roots with water or different pathogens released a total of 137 different volatile metabolites. Among them, 39 compounds were relatively consistent and 11 were specific to one or more diseases/inoculations. E. carotovora subsp. carotovora produced seven disease‐specific metabolites: 1‐butanol, 3‐methyl; 1‐pentanol; 1‐propanol, 2‐methyl; 2,3‐butanedione; boronic acid, ethyl; butane, 1‐methoxy‐3‐methyl; and ethane, ethoxy. Some metabolites were disease/inoculation discriminatory and were not detected in all treatments: 1,2‐dimethoxy‐ethene was common in carrots inoculated with E. carotovora subsp. carotovora and B. cinerea, while 2‐butanone, 3‐chloro‐4‐hydroxy‐1,4‐diphenyl was common in carrots inoculated with E. carotovora subsp. carotovora, F. avenaceum and water‐inoculated control. The significant mass ions, based on univariate analysis, from a total of 150 (46–195 m/z) and compounds from a total of 32 were further subjected to stepwise discriminant analysis and discriminant analysis. The models for 3 days after inoculation (DAI) were better than those for 6 DAI and 3 + 6 DAI, where up to 90% of the observations were correctly classified into respective inoculations. The disease‐discriminatory compounds from different diseases/inoculations and discriminant analysis models developed here have the potential for the early detection and discrimination of postharvest diseases of carrot cv. Vita‐treat, after validation under commercial conditions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号