首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   148篇
  国内免费   208篇
  2024年   6篇
  2023年   38篇
  2022年   13篇
  2021年   23篇
  2020年   51篇
  2019年   53篇
  2018年   55篇
  2017年   54篇
  2016年   45篇
  2015年   68篇
  2014年   64篇
  2013年   107篇
  2012年   49篇
  2011年   81篇
  2010年   46篇
  2009年   61篇
  2008年   67篇
  2007年   79篇
  2006年   85篇
  2005年   84篇
  2004年   73篇
  2003年   64篇
  2002年   63篇
  2001年   55篇
  2000年   33篇
  1999年   51篇
  1998年   69篇
  1997年   36篇
  1996年   40篇
  1995年   47篇
  1994年   44篇
  1993年   31篇
  1992年   31篇
  1991年   17篇
  1990年   38篇
  1989年   30篇
  1988年   27篇
  1987年   21篇
  1986年   13篇
  1985年   11篇
  1984年   13篇
  1983年   4篇
  1982年   11篇
  1981年   6篇
  1980年   2篇
  1979年   9篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
排序方式: 共有1980条查询结果,搜索用时 15 毫秒
41.
Nutrient dynamics of large grassland ecosystems possessing abundant migratory grazers are poorly understood. We examined N cycling on the northern winter range of Yellowstone National Park, home for large herds of free-roaming elk (Cervus elaphus) and bison (Bison bison). Plant and soil N, net N mineralization, and the deposition of ungulate fecal-N were measured at five sites, a ridgetop, mid-slope bench, steep slope, valley-bottom bench, and riparian area, within a watershed from May, 1991 to April, 1992.Results indicated similarities between biogeochemical properties of Yellowstone grassland and other grassland ecosystems: (1) landscape position and soil water affected nutrient dynamics, (2) annual mineralization was positively related to soil N content, and (3) the proportion of soil N mineralized during the year was negatively related to soil C/N.Grazers were a particularly important component of the N budget of this grassland. Estimated rates of N flow from ungulates to the soil ranged from 8.1 to 45.6 kg/ha/yr at the sites (average = 27.0 kg/ha/yr), approximately 4.5 times the amount of N in senescent plants. Rates of nitrogen mineralization for Yellowstone northern range grassland were higher than those measured in other temperate grassland ecosystems, possibly due to grazers promoting N cycling in Yellowstone.  相似文献   
42.
Fourteen lichens, 10 green algal lichens and four cyanolichens, as well as a cyanobacterium emitted significant quantities of H2S (0.01–0.04 pmol g dw–1 s–1) and DMS (0.005–0.025 pmol g dw–1 s–1) but were sinks for COS (0.015–0.14 pmol g dw–1 s–1). In contrast, exchange of CH3SH and CS2 were sporatic and inconsistent. Although some interspecific variation occurred for the first three gases, exchange rates were relatively uniform and were not influenced by irradiance conditions. In contrast to DMS and H2S emission, COS uptake was strongly influenced by degree of thallus hydration. Because lichen dominated systems cover extensive terrestrial habitats, COS uptake is potentially important in the world's sulfur budget.  相似文献   
43.
44.
A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to estimate fine root production, two methods were used to estimate fine root mortality, and decomposition was estimated using the buried bag technique. During both 1986 and 1987, fine root elongation began in early April, peaked during July and August, and nearly ceased by mid-October. Mean fine root ( 3 mm diameter) biomass in the surface 28-cm was 2.5 t ha–1 and necromass was 2.9 t ha–1. Annual decomposition rates ranged from 17 to 30% beneath the litter and 27 to 52% at a depth of 10 cm. Depending on the method used for estimation, fine root production ranged from 2.0 to 2.9 t ha–1, mortality ranged from 1.8 to 3.7 t ha–1 yr–1, and decomposition was 0.9 t ha–1 yr–1. Thus, turnover ranged from 0.8 to 1.2 yr–1. The nutrients that cycled through fine roots annually were 4.5–6.1 kg Ca, 1.1–1.4 kg Mg, 0.3–0.4 kg K, 1.2–1.7 kg P, 20.3–27.3 kg N, and 1.8–2.4 kg S ha–1. Fine root turnover was less important than leaf litterfall in the cycling of Ca and Mg and was similar to leaf litterfall in the amount of N, P, K and S cycled.  相似文献   
45.
Role of cellular antioxidants in metal-induced damage   总被引:23,自引:0,他引:23  
  相似文献   
46.
The spatial variability of soil resources following long-term disturbance   总被引:21,自引:0,他引:21  
The spatial distributions of selected soil properties in two adjacent sites in southwest Michigan were examined to evaluate the potential effects of chronic disturbance on resource heterogeneity. One site was a cultivated field that had been cleared, plowed, and cropped annually for decades prior to sampling while the other, uncultivated field was cleared of original forest in 1960 after which it was mown annually but never plowed or cropped. We took replicate samples from a 330-point unaligned grid across the sites for soil pH, gravimetric moisture, inorganic phosphorus, total carbon, and net nitrification and nitrogen mineralization potentials. Soils in the cultivated site contained less than half as much carbon as in the uncultivated site, but had higher levels of inorganic phosphorus and moisture, and higher soil pH. Potential net nitrogen mineralization and nitrification rates did not differ between sites. Geostatistical analysis showed that almost all properties examined were strongly autocorelated within each site; structural variance as a proportion of sample variance ranged from 30–95% for all properties, and for any given property differed little between sites. The distance over which this dependence was expressed, however, was for all properties but pH substantially less in the uncultivated site (7–26 m) as compared to the tilled site (48–108m), especially for total C and net nitrification and N mineralization. These results suggest that the spatial pattern and scale of soil variability can differ markedly among edaphically identical sites and that these differences can be related to disturbance history.  相似文献   
47.
We examined the content and isotopic composition of nitrogen within soils of a juniper woodland and found that a cryptobiotic crust composed of cyanobacteria, lichens, and mosses was the predominant source of nitrogen for this ecosystem. Disturbance of the crust has resulted in considerable spatial variability in soil nitrogen content and isotopic composition; intercanopy soils were significantly depleted in nitrogen and had greater abundance of 15N compared to intra-canopy soils. Variations in the 15N/14N ratio for inter- and intra-canopy locations followed similar Rayleigh distillation curves, indicating that the greater 15N/14N ratios for inter-canopy soils were due to relatively greater net nitrogen loss. Coverage of cryptobiotic crusts has been reduced by anthropogenic activities during the past century, and our results suggest that destruction of the cryptobiotic crust may ultimately result in ecosystem degradation through elimination of the predominant source of nitrogen input.  相似文献   
48.
Measurements of denitrification using the acetylene inhibition,15N isotope tracer, and N2 flux methods were carried out concurrently using sediment cores from Vilhelmsborg sø, Denmark, in an attempt to clarify some of the limitations of each technique. Three experimental treatments of overlying water were used: control, nitrate enriched, and ammonia enriched water. The N2 flux and15N tracer experiments showed high rates of coupled nitrification/denitrification in the sediments. The acetylene inhibition method did not capture any coupled nitrification/denitrification. This could be explained by acetylene inhibition of nitrification. A combined15N tracer/acetylene inhibition experiment demonstrated that acetylene inhibition of N2O reduction was incomplete and the method, therefore, only measured approximately 50% of the denitrification due to nitrate from the overlying water. Similar rates of denitrification due to nitrate in the overlying water were measured by the N2 flux method and the acetylene inhibition method, after correcting for the 50% efficiency of acetylene inhibition. Rates of denitrification due to nitrate from the overlying water measured by the15N tracer method, however, were only approximately 35% or less of those measured by the acetylene inhibition or N2 flux methods.  相似文献   
49.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   
50.
At altitudes between 1300 m to 2100 m in the Etna massif (Sicily), an endemic species of theBetula genus,Betula aetnensis Rafin, grows in a well-defined microclimatical context. Aboveground biomass and nutrient content studies within one stand revealed no significant differences from the otherBetula species, normally found in colder more temperate climate regions.Throughout the studied sites, biomass production, nutrient cycling and various structural or physiological characteristics (leaf area index) varied very little.Other researches indicate that the originality ofBetula aetnensis lies more in the histological or anatomical characteristics of its water conducting system which enables the species to adapt to Mediterranean-climate summer droughts in the Etna massif.
Riassunto Sull'Etna, tra 1300 e 2100 m d'altitudine, in una zona microclimaticamente ben definita del versante nordorientale, si rinviene laBetula aetnensis Rafin.Dallo studio della fitomassa e della mineralomassa aerea del bosco di Monte Baracca, è emerso che non vi sono differenze notevoli con le altre specie indagate del genereBetula, più caratteristiche dei climi temperati e freddi.La produzione di biomassa, cosi come la gestione degli elementi nutritivi, è molto simile ai diversi popolamenti già indagati, cosi come certe caratteistiche strutturali e fisiologiche (leaf area index).L'originalità dellaBetula aetnensis è da ricercarsi nel vantaggio che ne ricava, a livello endogeno, sfruttando le caratteristiche istologiche ed anatomiche del suo apparato conduttore, che le consentono un efficace ed eccellente adattamento alle condizioni di siccità estive particolari del clima mediterraneo del vulcano.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号