首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   25篇
  国内免费   28篇
  2024年   3篇
  2023年   14篇
  2022年   9篇
  2021年   24篇
  2020年   35篇
  2019年   46篇
  2018年   27篇
  2017年   24篇
  2016年   28篇
  2015年   20篇
  2014年   14篇
  2013年   81篇
  2012年   5篇
  2011年   8篇
  2010年   13篇
  2009年   13篇
  2008年   19篇
  2007年   21篇
  2006年   24篇
  2005年   20篇
  2004年   23篇
  2003年   22篇
  2002年   23篇
  2001年   27篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   16篇
  1996年   11篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
121.
122.
The use of electronic devices with light-emitting screens has increased exponentially in the last decade. As a result, humans are continuously exposed to unintentional artificial light. We explored the effects of acute and chronic exposure to artificial light at night (ALAN) via screen illumination on sleep, circadian rhythms, and related functional outcomes. Nineteen participants (11 female and 8 males, mean age 28.1 ± 7.2 years) underwent a six-night study with three experimental conditions using a repeated-measures design: baseline (first night, no light exposure), acute ALAN exposure (second night), and chronic ALAN exposure (third to sixth nights). Each light exposure lasted for 2 hours (21:00–23:00). Participants underwent an overnight polysomnography at the end of each condition (nights 1, 2, and 6). We collected urine samples (for melatonin metabolite analysis), while body (oral) temperatures were measured before and after exposure. Each morning, the participants filled out questionnaires and conducted a computerized attention test. Both acute and chronic illumination significantly disrupted sleep continuity and architecture and led to greater self-reported daytime sleepiness, negative emotions, and attention difficulties. Both exposure types also altered circadian rhythms, subduing the normal nocturnal decline in body temperature and dampening nocturnal melatonin secretion. In sum, ALAN exposure from electronic screens has an immediate, detrimental, yet stable effect on sleep, circadian regulation, and next-day functional outcomes. Given the widespread use of electronic devices today, our findings suggest that even one night of screen light exposure may be sufficient to cause adverse effects on health and performance.  相似文献   
123.
布氏田鼠适应性产热过程中血清甲状腺激素的变化   总被引:4,自引:0,他引:4  
侯建军 《四川动物》1997,16(1):27-30
早春季节对布氏田鼠(Microtusbrandti)施以不同光照和温度处理,其血清甲状腺素(T4)含量没有明显变化;低温明显地升高了三碘甲腺原氨酸(T3)的含量和T3/T4的比率。短光照只在低温环境中能升高T3/T4的比率。秋节温暖环境中的短光照或褪黑激素(Melatonin,MLT)处理,都能升高血清T3的浓度和增加T3/T4的比率。表明甲状腺激素在布氏田鼠短光照和低温的适应性产热中起着重要的调控作用,褪黑激素诱导布氏田鼠产热与甲状腺激素有密切的联系。  相似文献   
124.
It was recently demonstrated that the pineal neurohormone melatonin is a hydroxyl radical scavenger and antioxidant, and that it plays an important role in the immune system. In studies reported herein, we have investigated the relationship of the melatonin level and the NF-κ B DNA binding activity in the spleen of Sprague—Dawley rats. These in vivo results indicate that NF- κB DNA binding activity in the spleen is lower at night, when endogenous melatonin levels are elevated, than during the day, when endogenous melatonin levels are lower. Furthermore, exogenously administered melatonin (10mg/kg) was shown to cause a significant decrease in NF-κB DNA binding activity in the spleen at 60min after intraperitoneal injection (as compared with vehicle-treated rats). These new findings suggest that the normal night time rise which can be expected for melatonin may be associated with increased NF-κB DNA binding activity in the spleen. The melatonin, therefore, could potentially act to modulate spleen function and/or the immune system by regulating the NF-κB DNA binding activity in the spleen.  相似文献   
125.
Light absorbed by a photopigment in a photoreceptor cell causes a photochemical reaction converting the 11-cis retinal chromophore into the all-trans configuration. These changes lead to a series of events that causes cGMP hydrolysis, a following decrease of cGMP in the cytoplasm of the photoreceptor outer segment and a closure of cGMP-gated cationic channels. As a consequence of these processes the membrane hyperpolarizes. In pineal photoreceptor cells of lower vertebrates these processes are only partly investigated. Molecules involved in the phototransduction process and the desensitization, like opsin, vitamin A, α-transducin and arrestin, have been immunocytochemically localized in pineal photoreceptors and also electrophysiological studies have shown that phototransduction mechanisms in pineal photoreceptors might be very similar to those found in retinal photoreceptors. This review will summarize some of the current knowledge on pineal photoreception and compare it with retinal processes.  相似文献   
126.
Individual rainbow trout Oncorhynchus mykiss were held in a specially constructed tank that enabled water to be collected separately from the anterior and posterior ends of the fish. Measurement by radioimmunoassay showed that >95% of the cortisol and melatonin released into the water originated from the anterior end (dominated by the gills). High performance liquid chromatography confirmed the identity of both hormones.  相似文献   
127.
Melatonin (MLT) was isolated from water samples using solid phase extraction cartridges and measured by radioimmunoassay. In tanks of rainbow trout Oncorhynchus mykiss , concentrations of MLT in water increased rapidly from <0·1 ng l−1 in the light phase to 0·7 ng l−1 in the dark giving calculated release rates of <1 ng kg−1 h−1 and 15 ng kg−1 h−1, respectively. This cycle in water MLT values corresponds to reported changes in plasma MLT concentrations. The colour of the tanks and a daytime acute handling stress did not affect concentrations of MLT in either the light or dark phase.  相似文献   
128.
129.
The present study demonstrated a temporal relationship between the concentrations of melatonin, oxidative status and digestive physiology in the gut of a tropical carp Catla catla. We measured the levels of gut melatonin, malondialdehyde (MDA) – a faithful marker of intracellular stress, different antioxidants and major digestive enzymes in the carp gut at four different clock hours in a daily cycle under natural photo-thermal conditions. A correlation between the gut variables was sought to point their possible functional relationship. Gut melatonin titers displayed significant diurnal variations with a peak at midday. An identical temporal pattern with the highest value at midday and nadir at midnight was noted in the activities of superoxide dismutase, catalase and glutathione peroxidase. In contrast, levels of MDA and reduced glutathione (GSH) were highest at midnight and lowest at midday. The activity of all the studied digestive enzymes (α-amylase, cellulase, protease and lipase) showed significant daily variations with a peak at midday. Gut melatonin concentrations by showing a positive correlation with the activity of both enzymatic antioxidants and digestive enzymes, and a negative correlation with the levels of GSH and MDA indicated their possible physiological interplay in a daily cycle. Collectively, our study presented the first information on the daily profiles of oxidative stress, different antioxidants and digestive enzymes in the gut tissues of any fish species, and suggested their functional relationship with the concentrations of gut melatonin in carp Catla catla.  相似文献   
130.
Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses had more (P<0.001) pancreatic insulin-positive area (relative to section of tissue) and a greater percent of small, large and giant insulin-containing cell clusters (P⩽0.02). Larger insulin-containing clusters were observed in fetuses (P<0.001) compared with ewes. In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α-amylase content. Nutrient restriction decreased the number of pancreatic insulin-containing clusters in fetuses while melatonin supplementation did not influence insulin concentration. This indicated using melatonin as a therapeutic agent to mitigate reduced pancreatic function in the fetus due to maternal nutrient restriction may not be beneficial.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号