首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   11篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   12篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有96条查询结果,搜索用时 133 毫秒
21.
Morphometric methods allow the quantification of directions of phenotypic changes and their statistical comparison in a morphometric space. We applied this approach to investigate several candidate factors to explain changes in mandible shape occurring in house mice (Mus musculus domesticus, Mammalia, Rodentia) in Corsica and a nearby islet. The role of niche widening and of the concomitant change in diet was evaluated by comparing the micro‐evolutionary insular change to the macro‐evolutionary difference between omnivorous and herbivorous rodents. Phenotypic plasticity, which may contribute to rapid insular evolution, was assessed by breeding laboratory mice on hard versus soft food. The related change in mandible shape was compared with differences between continental and insular populations. The role of allometry was evaluated by assessing shape change related to size within the continental population and comparing this direction of change with differences on islands. Finally, evolution may be facilitated along the direction of the greatest phenotypic variance. This hypothesis was tested by computing in wild populations vectors corresponding to this direction and by comparing these vectors with those corresponding to estimates of shape changes related to plasticity, micro‐ and macro‐evolutionary processes. In Corsica, the congruence in directions of macro‐ and micro‐evolutionary phenotypic vectors (Corsican/continental mice versus omnivorous/herbivorous rodents) supports the hypothesis of adaptation in mandible shape evolution. By contrast, on the islet, phenotypic divergence follows directions of plastic response to food consistency as well as within‐population allometry. Thus, results suggest differences in the relative importance of processes which may influence rodent mandibular shape depending on the size of the islands they colonized. Faster evolution and plasticity may be more evident in small and often ephemeral populations living on small islands, whereas micro‐evolutionary processes may have enough time and genetic variability to progressively ‘align’ with macro‐evolutionary trends in large populations from big islands.  相似文献   
22.
Little is known about ingested food size (Vb) in primates, even though this variable has potentially important effects on food intake and processing. This study provides the first data on Vb in strepsirrhine primates using a captive sample of 17 species. These data can be used for generating and testing models of feeding energetics. Strepsirrhines are of interest because they are hypometabolic and chewing rate and daily feeding time do not show a significant scaling relationship with body size. Using melon, carrot, and sweet potato we found that maximum Vb scales isometrically with body mass and mandible length. Low dietary quality in larger strepsirrhines might explain why Vb increases with body size at a greater rate than does resting metabolic rate. Relative to body size, Vb is large in frugivores but small in folivores; furthermore scaling slopes are higher in frugivores than in folivores. A gross estimate of dietary quality explains much of the variation in Vb that is not explained by body size. Gape adaptations might favor habitually large bites for frugivores and small ones for folivores. More data are required for several feeding variables and for wild populations. Am J Phys Anthropol 142:625–635, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
23.
Local variation in cortical bone thickness in the postcanine mandibular corpus appears to be stereotypical among anthropoids. Specifically, at sections under the molars, lingually situated cortical bone is typically thinner than that along the lateral aspect. This pattern applies despite phylogenetic, dietary, and allometric differences among the anthropoids sampled to date. Demes et al. (Food Acquisition and Processing in Primates [1984] New York: Plenum Press, p. 369-390) employed a theoretical analysis of mastication in Gorilla and Homo to argue that this pattern could be explained with reference to biomechanical stresses. Specifically, they proposed that the combined effects of torsion and direct shear on the working-side corpus create a condition in which net stresses and strains are reduced along the lingual cortical plate. Demonstration of this effect would suggest a functional linkage between localized differences in bone mass and strain gradients in the facial skeleton. We conducted an empirical evaluation of the effects of the combined loads of torsion and direct shear in vitro on a sample of formalin-fixed human mandibles. Rosette strain gages were affixed to the lateral and medial aspects of the corpus in each specimen, and surface strains were recorded separately under controlled torsional and occlusal loads, and under simultaneous application of these loads. The hypothesis that lingual strains are reduced under combined twisting and occlusal loads was generally supported; however, we observed reduction in surface strains at some sites along the lateral aspect of the corpus under these combined loads as well. These unexpected findings are attributable to unanticipated loading conditions imposed by occlusal forces, which result from sources of stress in addition to direct shear. These experiments provide provisional support for the hypothesis that superposed sources of bone strain produce large strain gradients between buccal and lingual aspects of the mandibular corpus, and that local variation in bone mass may be associated with these gradients.  相似文献   
24.
The form and function of the masticatory apparatus of the fossil genera Vassallia and Holmesina are analyzed so that the possible dietary behaviors of these pampathere xenarthrans might be inferred. Analysis is based on comparisons of dental morphology and skeletal features (through RFTRA) associated with the masticatory musculature among the pampatheres, the extant dasypodids Euphractus and Dasypus, and the glyptodont Propalaeohoplophorus. A method is proposed for generating a moment arm of the massetericus independently of the muscle's line of action, which allows direct comparison among extant and fossil mammals. The masticatory apparatus of the pampatheres strongly resembles that of Euphractus among extant forms, but the development of muscular attachment sites indicates a more powerful musculature, particularly the massetericus; the taxa differ most markedly in dental morphology. Long moment arms about the jaw joint and large ratios of muscle to bite moments indicate forceful rather than quick movements. The various skeletal and dental features analyzed suggest that the masticatory apparatus of the pampatheres was more powerful and efficient in transverse chewing than in dasypodids and that they were primarily grazers consuming mainly coarse vegetation. These features, some shared with herbivorous ungulates, include wide, relatively flat mandibular condyles; condyles well dorsal to muscular insertion sites; expanded angular processes; unfused symphysis; a posteriorly extended tooth row; open-rooted teeth; mesial teeth that bear mainly transverse striations; distal teeth that are mesiodistally elongated, bear basined occlusal surfaces, and in Vassallia possess a central island of resistant dentine that acted as a functional analogue of an ectoloph; and teeth with a stepwise arrangement. The results of this study indicate that detailed analysis and comparison of morphology lead to useful predictions of behavior.  相似文献   
25.
26.
The trigeminal motor (Vmo), facial (VII), and hypoglossal (XII) nuclei of the brainstem comprise the final common output for neural control of most orofacial muscles. Hence, these cranial motor nuclei are involved in the production of adaptive behaviors such as feeding, facial expression, and vocalization. We measured the volume and Grey Level Index (GLI) of Vmo, VII, and XII in 47 species of primates and examined these nuclei for scaling patterns and phylogenetic specializations. Allometric regression, using medulla volume as an independent variable, did not reveal a significant difference between strepsirrhines and haplorhines in the scaling of Vmo volume. In addition, correlation analysis using independent contrasts did not find a relationship between Vmo size or GLI and the percent of leaves in the diet. The scaling trajectory of VII volume, in contrast, differed significantly between suborders. Great ape and human VII volumes, furthermore, were significantly larger than predicted by the haplorhine regression. Enlargement of VII in these taxa may reflect increased differentiation of the facial muscles of expression and greater utilization of the visual channel in social communication. The independent contrasts of VII volume and GLI, however, were not correlated with social group size. To examine whether the human hypoglossal motor system is specialized to control the tongue for speech, we tested human XII volume and GLI for departures from nonhuman haplorhine prediction lines. Although human XII volumes were observed above the regression line, they did not exceed prediction intervals. Of note, orang-utan XII volumes had greater residuals than humans. Human XII GLI values also did not differ from allometric prediction. In sum, these findings indicate that the cranial orofacial motor nuclei evince a mosaic of phylogenetic specializations for innervation of the facial muscles of expression in the context of a generally conservative scaling relationship with respect to medulla size.  相似文献   
27.
The craniofacial haft resists forces generated in the face during feeding, but the importance of these forces for the form of the craniofacial haft remains to be determined. In vivo bone strain data were recorded from the medial orbital wall in an owl monkey (Aotus), rhesus macaques (Macaca mulatta), and a galago (Otolemur) during feeding. These data were used to determine whether: the interorbital region can be modeled as a simple beam under bending or shear; the face is twisting on the brain case during unilateral biting or mastication; the interorbital "pillar" is being axially compressed during incisor loading and both axially compressed and laterally bent during mastication; and the interorbital "pillar" transmits axial compressive forces from the toothrow to the braincase. The strain data reveal that the interorbital region cannot be modeled as a anteroposteriorly oriented beam bent superiorly in the sagittal plane during incision or mastication. The strain orientations recorded in the majority of experiments are concordant with those predicted for a short beam under shear, although the anthropoids displayed evidence of multiple loading regimes in the medial orbital wall. Strain orientation data corroborate the hypothesis that the strepsirrhine face is twisted during mastication. The hypothesis that the interorbital region is a member in a rigid frame subjected to axial compression during mastication receives some support. The hypothesis that the interorbital region is a member in a rigid frame subjected to lateral bending during mastication is supported by the epsilon1/absolute value epsilon2 ratio data but not by the strain orientation data. The timing of peak shear strains in the medial orbital wall of anthropoids does not bear a consistent relationship to the timing of peak shear strain in the mandibular corpus, suggesting that bite force is not the only external force influencing the medial orbital wall. Strain orientation data suggest the existence of two distinct loading regimes, possibly associated with masseter or medial pterygoid contraction. Regardless of the loading regime, all taxa showed low strain magnitudes in the medial orbital wall relative to the anterior root of the zygoma and the mandibular corpus. The strain gradients documented here and elsewhere suggest that, in anthropoids at least, local effects of external forces are more important than a single global loading regime. The low strain magnitudes in the medial orbital wall and in other thin bony plates around the orbit suggest that these structures are not optimally designed for resisting feeding forces. It is hypothesized that their function is to provide rigid support and protection for soft-tissue structures such as the nasal epithelium, the brain, meninges, and the eye and its adnexa. In contrast with the face of Otolemur, which appears to be subjected to a single predominant loading regime, anthropoids may experience different loading regimes in different parts of the face. This implies that the anthropoid and strepsirrhine facial skulls might be optimized for different functions.  相似文献   
28.
Background: For quantitative evaluation of masticatory ability of the elderly patients, there should be a simple and reliable method without special techniques and instruments. Objective: The purpose of this study was to examine the validity and reliability of a visual scoring method for assessing masticatory performance. Materials and Methods: A 10‐stage scale for visually scoring was rated based on the range of the glucose concentration dissolved from comminuted jelly. Photographic images of comminuted jellies were produced as a standard material for each score. Fifty subjects were recruited as raters who graded the visual score for 50 photographic images of comminuted jellies on the screen of a lap‐top three times in random order. Results: There were strong correlations (rs = 0.911– 0.981, Spearman’s rank coefficient) between the actual scores determined from the glucose concentration and the visual scores graded by subjects in all three measurements. The intraclass correlation coefficients (ICCs) of the inter‐rater reliability and the ICCs of the intra‐rater reliability of the visual scoring ranged from 0.946 to 0.947 and from 0.860 to 0.987 in three measurements, respectively. Conclusions: These results indicated that the visual scoring method was valid and reliable for evaluation of masticatory performance.  相似文献   
29.
doi: 10.1111/j.1741‐2358.2012.00666.x Chewing number is related to incremental increases in body weight from 20 years of age in Japanese middle‐aged adults Background: Eating habits are associated with both current obesity and incremental increases in body weight from young adulthood, but no study has focused on chewing number during meals among community residents. Objective: This study focused on the relationship between chewing number and incremental increases in body weight from 20 years of age. Methods: A total of 93 persons aged 35–61 years participated. The subjects were asked to set the device and record their chewing number during each meal on a particular day. They were also asked whether their body weight had increased by 10 kg or more since they were 20 years old. Results: The body weight of 28 subjects (30%) had increased more than 10 kg since the age of 20 years. Total chewing number showed a relationship with such body weight increases. The odds ratio of weight increments of more than 10 kg for the lowest tertile group was 4.6 [95% confidence interval (CI), 1.3–16.2] relative to the highest tertile group (Model 1). The odds ratio of weight increments for the lowest tertile group increased to 6.3 (95% CI, 1.6–25.4) in Model 2 and to 9.1 (95% CI, 1.7–49.8) in Model 3. Conclusion: Although this study was limited because it did not consider all risk factors, categorical chewing number was related independently to body weight increments of more than 10 kg from 20 years of age.  相似文献   
30.
Alveolar bone has several mechanical functions, including tooth support and accommodation of occlusal and other masticatory forces. Its unique functional-mechanical environment is reflected by its structural characteristics, but whether alveolar bone is materially distinct from bone elsewhere in the primate facial skeleton is uncertain. This uncertainty is attributable not only to a limited amount of data but also to conflicting findings among these data. We evaluated elastic modulus variation in the mandibular corpus of eight adult specimens of the monkeys Procolobus badius and Colobus polykomos via microindentation to evaluate whether alveolar bone is more compliant than basal bone and to quantify patterns of variation between sexes and species. We sampled Vickers hardness from six serial transverse sections and one coronal section from both the alveolar process and the basal corpus. Hardness values were converted to elastic modulus via regressions specific for bone tissue. Analysis of variance reveals that a plurality of variation is found on a regional scale; i.e., alveolar bone is more compliant than adjacent basal bone. Species affiliation and sex are not significant sources of variation. These findings support a hypothesis that compliance of alveolar bone represents a material solution for avoiding large stress concentrations arising from occlusal loads. Other comparative data suggest important differences between colobine and cercopithecine mandibles in terms of bone stiffness, both overall and in terms of relative stiffness of alveolar and basal cortical bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号