首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   142篇
  国内免费   72篇
  2024年   4篇
  2023年   9篇
  2022年   18篇
  2021年   18篇
  2020年   59篇
  2019年   46篇
  2018年   65篇
  2017年   49篇
  2016年   54篇
  2015年   51篇
  2014年   44篇
  2013年   110篇
  2012年   28篇
  2011年   50篇
  2010年   32篇
  2009年   48篇
  2008年   53篇
  2007年   52篇
  2006年   48篇
  2005年   55篇
  2004年   55篇
  2003年   37篇
  2002年   26篇
  2001年   33篇
  2000年   28篇
  1999年   15篇
  1998年   27篇
  1997年   10篇
  1996年   15篇
  1995年   17篇
  1994年   19篇
  1993年   29篇
  1992年   17篇
  1991年   24篇
  1990年   18篇
  1989年   8篇
  1988年   6篇
  1987年   24篇
  1986年   19篇
  1985年   9篇
  1984年   1篇
  1983年   3篇
  1982年   11篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1366条查询结果,搜索用时 203 毫秒
71.
This systematic review examines effects of surface texture on marine biofouling and characterizes key research methodologies. Seventy-five published articles met selection criteria for qualitative analysis; experimental data from 36 underwent quantitative meta-analysis. Most studies investigated fouling mechanisms and antifouling performance only in laboratory assays with one to several test species. Textures were almost exclusively a single layer of regularly arranged geometric features rather than complex hierarchical or irregular designs. Textures in general had no effect or an inconclusive effect on fouling in 46% of cases. However, effective textures more often decreased (35%) rather than increased (19%) fouling. Complex designs were more effective against fouling (51%) than were regular geometric features (32%). Ratios of feature height, width, or pitch to organism body length were significant influences. The authors recommend further research on promising complex and hierarchical texture designs with more test species, as well as field studies to ground-truth laboratory results.  相似文献   
72.
Previously, we showed that inoculation of tobacco with Pseudomonas syringae incompatible pv. maculicola results in a rapid and persistent burst of superoxide (O2) from mitochondria, no change in amount of mitochondrial alternative oxidase (AOX) and induction of the hypersensitive response (HR). However, inoculation with incompatible pv. phaseolicola resulted in increased AOX, no O2 burst and no HR. Here, we show that in transgenic plants unable to induce AOX in response to pv. phaseolicola, there is now a strong mitochondrial O2 burst, similar to that normally seen only with pv. maculicola. This interaction did not however result in a HR. This indicates that AOX amount is a key determinant of the mitochondrial O2 burst but also that the burst itself is not sufficient to induce the HR. Surprisingly, the O2 burst normally seen towards pv. maculicola is delayed in plants lacking AOX. This delay is associated with a delayed HR, suggesting that the burst does promote the HR. A O2 burst can also be induced by the complex III inhibitor antimycin A (AA), but is again delayed in plants lacking AOX. The similar mitochondrial response induced by pv. maculicola and AA suggests that electron transport is a target during HR‐inducing biotic interactions.  相似文献   
73.
Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.  相似文献   
74.
The present study documents the precipitation of Fe(III), silica, and sulfate in the presence of 3 different bacteria (Bacillus subtilus, Bacillus licheniformis, and Pseudomonas aeruginosa), under different total Fe(III) concentrations (10?2 M, 10?3 M, 10?4 M) at constant pH (4.0). Morphology and chemical composition of the precipitates were compared with those formed in abiotic control systems, while chemical composition and precipitation of the precipitates were modeled according to solution chemistry data. Transmission electron microscopy (TEM) observations showed morphological differences between the biotic and abiotic systems. All systems contained small grains (diam. 2–50 nm), but amorphous material (i.e., material without any specific morphology) and nodules were present only in the cell systems. This is because bacterial surfaces and exopolymers provided numerous binding sites for metal and anion sorption and promoted heterogeneous nucleation of hydrous ferric oxides (HFO). The initial Fe/Si and Fe/SO4 molar ratios of the solutions dictated the type of precipitates in most systems, since abiotic control systems were saturated to oversaturated with respect to amorphous silica, siliceous ferrihydrite, schwertmannite, ferrihydrite, goethite, or combinations of these. Of the three strains studied, B. licheniformis appeared to have the greatest influence on the chemical composition of the precipitates, especially in the presence of Si. B. licheniformis (a gram‐positive bacterium with a large capsule) favored the precipitation of HFO containing less Si than the predicted solids, because Si rather than Fe oxides was preferentially sorted to extracellular polymers (capsule). On the other hand, the formation of SO4‐rich HFO (similar to schwertmannite) did not seem to be affected by the presence of bacteria.  相似文献   
75.
Biomineralization processes have traditionally been grouped into two distinct modes; biologically induced mineralization (BIM) and biologically controlled mineralization (BCM). In BIM, microbes cause mineral formation by sorbing solutes onto their cell surfaces or extruded organic polymers and/or releasing reactive metabolites which alter the saturation state of the solution proximal to the cell or polymer surface. Such mineral products appear to have no specific recognized functions. On the other hand, in BCM microbes exert a great degree of chemical and genetic control over the nucleation and growth of mineral particles, presumably because the biominerals produced serve some physiological function. Interestingly, there are examples where the same biomineral is produced by both modes in the same sedimentary environment. For example, the magnetic mineral magnetite (Fe 3 O 4 ) is generated extracellularly in the bulk pore waters of sediments by various Fe(III)-reducing bacteria under anaerobic conditions, while some other anaerobic and microaerophilic bacteria and possibly protists form magnetite intracellularly within preformed vesicles. Differences in precipitation mechanisms might be caused by enzymatic activity at specific sites on the surface of the cell. Whereas one type of microbe might facilitate the transport of dissolved Fe(III) into the cell, another type will express its reductive enzymes and cause the reduction of Fe(III) external to the cell. Still other microbes might induce magnetite formation indirectly through the oxidation of Fe(II), followed by the reaction of dissolved Fe(II) with hydrolyzed Fe(III). The biomineralization of magnetite has significant effect on environmental iron cycling, the magnetization of sediments and thus the geologic record, and on the use of biomarkers as microbial fossils.  相似文献   
76.

Biomineralization in heterogeneous aqueous systems results from a complex association between pre-existing surfaces, bacterial cells, extracellular biomacromolecules, and neoformed precipitates. Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance [ATR], diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mn-oxidation by Pseudomonas putida strain GB-1. Distinct differences in the adhesive properties of GB-1 were observed upon Mn oxidation. No adhesion to the ZnSe crystal surface was observed for planktonic GB-1 cells coated with biogenic MnO x , whereas cell adhesion was extensive and a GB-1 biofilm was readily grown on ZnSe, CdTe, and Ge crystals prior to Mn-oxidation. IR peak intensity ratios reveal changes in biomolecular (carbohydrate, phosphate, and protein) composition during biologically catalyzed Mn-oxidation. In situ monitoring via ATR-FTIR of an active GB-1 biofilm and DRIFT data revealed an increase in extracellular protein (amide I and II) during Mn(II) oxidation, whereas transmission mode measurements suggest an overall increase in carbohydrate and phosphate moieties. The FTIR spectrum of biogenic Mn oxide comprises Mn-O stretching vibrations characteristic of various known Mn oxides (e.g., “acid” birnessite, romanechite, todorokite), but it is not identical to known synthetic solids, possibly because of solid-phase incorporation of biomolecular constituents. The results suggest that, when biogenic MnO x accumulates on the surfaces of planktonic cells, adhesion of the bacteria to other negatively charged surfaces is hindered via blocking of surficial proteins.  相似文献   
77.
Both natural and anthropogenic processes are responsible for excessive organic loading of submerged soils, with detrimental environmental consequences. The often insufficient natural attenuation can be enhanced by exploiting microbial manganese cycles. This review describes how an anoxic oxidation of organic matter with concomitant reduction of MnO 2 can link up with a reoxidation of the resulting, soluble Mn(II) in oxic layers. The potentially attainable oxidation rates through these natural cycles are of the same order as the organic carbon accumulation rates. The microbiology and physiology of the responsible organisms are discussed, as well as examples of naturally occurring manganese cycles and the possibility to engineer this natural phenomenon.  相似文献   
78.
79.
粉末包衣技术是薄膜包衣技术发展至今的一个重要分支,其在药物制剂领域的应用优势突出,近年来受到药剂学研究者的广泛关注。分类综述目前应用于药物制剂的几种主要粉末包衣技术,包括属于物理化学法中的凝聚法、溶剂蒸发法和熔融分散法以及物理机械法中的喷雾干燥法、喷雾冷凝法、干法包衣技术和气流悬浮包衣技术,并探讨粉末包衣技术的主要功用,如用于制备缓控释制剂、药物粉末表面改性、改善口服制剂感官效果和提高药物及制剂稳定性等。  相似文献   
80.
Grapevine trunk diseases (GTD), caused by a wide range of different fungi, are responsible for decline and productivity losses in vines at all growth stages. Grapevine responses to fungal attack include morphological and physiochemical defence mechanisms in the vascular system to reduce fungal infections. However, the extent to which these responses could control further spread by GTD‐fungi in the xylem vessels is poorly known. This study shows the formation of tyloses inside xylem vessels of diseased grapevines, as well as extracellular ligninolytic activities [lignin peroxidase, manganese peroxidase (MnP) and/or laccase] exhibited by some GTD‐fungi isolated here from symptomatic grapevines. In particular, Botryosphaeriaceae spp. and Phaeoacremonium minimum showed all three lignin‐degrading enzymatic activities. We also examined whether selected vine phenolic compounds, often located in the vascular system in response to fungal infection, could affect the lignin‐degrading activity from those GTD‐fungi as well as fungal colonisation. We found that phenolic compounds appeared to inhibit MnP activity, in addition to reducing fungal growth by causing anomalies in the hyphae morphology. Our results support that affected grapevines can initiate the tylosis formation in order to constrain fungi in the xylem vessels, while highlight the complementary action of the phenolic compounds to inhibit the fungi growth and colonisation. Phenolic compounds are therefore likely to have important role in alternative strategies for preventing trunk diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号