全文获取类型
收费全文 | 796篇 |
免费 | 39篇 |
国内免费 | 57篇 |
专业分类
892篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 13篇 |
2021年 | 25篇 |
2020年 | 14篇 |
2019年 | 17篇 |
2018年 | 24篇 |
2017年 | 18篇 |
2016年 | 14篇 |
2015年 | 24篇 |
2014年 | 56篇 |
2013年 | 73篇 |
2012年 | 29篇 |
2011年 | 63篇 |
2010年 | 23篇 |
2009年 | 49篇 |
2008年 | 42篇 |
2007年 | 46篇 |
2006年 | 58篇 |
2005年 | 48篇 |
2004年 | 28篇 |
2003年 | 27篇 |
2002年 | 33篇 |
2001年 | 21篇 |
2000年 | 18篇 |
1999年 | 14篇 |
1998年 | 6篇 |
1997年 | 11篇 |
1996年 | 14篇 |
1995年 | 12篇 |
1994年 | 10篇 |
1993年 | 6篇 |
1992年 | 6篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 9篇 |
1982年 | 5篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有892条查询结果,搜索用时 46 毫秒
91.
Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin–Gd-DTPA–albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. 相似文献
92.
人肝刺激因子对大鼠实验性慢性肝损伤的保护作用 总被引:3,自引:0,他引:3
从健康孕妇水囊引产4─6个月龄的胎儿取肝,采用LaBrecque方法提取人肝刺激因子(hHSS)。经3H-胸腺嘧啶核苷参入肝DNA法测定其生物活性。表明此hHSS可刺激肝细胞DNA合成。采用皮下注射CCl4和饮用10%乙醇来制备慢性肝损伤动物模型,观察了hHSS的保护肝脏作用。结果表明:hHSS可使CCl4-乙醇所致慢性肝损伤大鼠的死亡率、血清谷丙转氨酶水平、肝组织中羟脯氨酸含量的升高以及肝组织中丙二醛的含量降低。肝组织切片表明:hHSS能减轻肝组织的损伤程度,促进肝细胞再生,并能明显防止肝纤维化的形成和发展。可见,hHSS对CCl4-乙醇所致的慢性肝损伤大鼠有明显的保护作用,其机制可能与促进肝细胞再生及抑制肝细胞膜的脂质过氧化有关。 相似文献
93.
Bae JH Mun KC Park WK Lee SR Suh SI Baek WK Yim MB Kwon TK Song DK 《Biochemical and biophysical research communications》2002,290(5):1506-1512
We have investigated the protective effect of (-)-epigallocatechin gallate (EGCG) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolo propionate (AMPA)-induced toxicity in cultured rat hippocampal neurons. Treatment of 24 h AMPA (10 microM) reduced the neuronal viability in both survival neuron counting and MTT reduction assay compared with control, with increase in cellular concentrations of hydrogen peroxide and malondialdehyde. These responses to AMPA were significantly blocked by co-treatments with EGCG (10 microM), which effect was very similar to the protective ability of a known antioxidant catalase (2000 U/ml). AMPA (50 microM) elicited the increase in intracellular calcium concentration ([Ca(2+)]i) on which EGCG significantly attenuated both peak amplitude and sustained nature of that [Ca(2+)]i increase in a dose-dependent manner. These data suggest that EGCG has a neuroprotective effect against AMPA through inhibition of AMPA-induced [Ca(2+)]i increase and consequent attenuation of reactive oxygen species production and lipid peroxidation as an antioxidant and a radical scavenger. 相似文献
94.
95.
S Ben Khedir D Moalla N Jardak M Mzid Z Sahnoun T Rebai 《Biotechnic & histochemistry》2016,91(7):480-491
We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H2O2). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H2O2. We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H2O2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H2O2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties. 相似文献
96.
Palakolanu Sudhakar Reddy 《Analytical biochemistry》2008,381(2):248-253
We developed a PCR-based high-throughput genome-walking protocol. The novelty of this protocol is in the random introduction of unique walker primer binding sites into different regions of the genome efficiently by taking advantage of the rolling circle mode of DNA synthesis by Phi29 DNA polymerase after annealing the partially degenerate primers to the denatured genomic DNA. The inherent strand-displacement activity of the Phi29 DNA polymerase displaces the 5′ ends of downstream strands and DNA synthesis continues, resulting in a large number of overlapping fragments that cover the whole genome with the unique walker adapter attached to the 5′ end of all the genomic DNA fragments. The directional genome walking can be performed using a locus-specific primer and the walker primer and Phi29 DNA polymerase-amplified genomic DNA fragments as template. The locus-specific primer will determine the position and direction of the genome walk. Two rounds of successive PCR amplifications by locus-specific and walker primers and their corresponding nested primers effectively amplify the flanking DNA fragments. The desired PCR fragment can be either cloned or sequenced directly using another nested, locus-specific primer. We successfully used this protocol to isolate and sequence 5′ flanking regions/promoters of selected plant genes. 相似文献
97.
Jawahar Kalra Subrahmanyam V. Mantha Praveen Kumar Kailash Prasad 《Molecular and cellular biochemistry》1994,136(2):125-129
Lipid peroxidation of membranes by oxygen free radicals has been implicated in various disease states. Different antioxidants and iron chelators have been used to reduce lipid peroxidation. Lazaroids have been used for the acute treatment of central nervous system disorders such as trauma and ischemia wherein lipid peroxidative processes take place.In this study we evaluated the effect of lazaroids (U-785 18F and U-74389F) on the release of acid phosphatase activity and formation of malondialdehyde (MDA) in rat liver lyosomes subjected to exogenously generated oxygen free radicals. There was a significant increase in the acid phosphatase release and MDA formation in the presence of oxygen free radicals. This was prevented by both the lazaroids. In a separate study the effect of lazaroid U-74389F was seen on the zymosan-stimulated polymorphonuclear (PMN) leukocyte-derived chemiluminescence. The PMN leukocyte chemiluminescent activity was attenuated by the lazaroid in a dose-dependent manner. These studies suggest that lazaroids may inhibit lipid peroxidation and stabilize the membrane. 相似文献
98.
Saniova B Drobny M Lehotsky J Sulaj M Schudichova J 《Cellular and molecular neurobiology》2006,26(7-8):1473-1480
1. The main idea of the open clinical trial was to compare the income and outcome clinical picture and the evolution of the biochemical markers in the defined intervals in closed head injury group patients.2. In the group of 32 patients, mean age 40.78±15.36 years suffering from closed traumatic brain injury the following markers were measured: glycaemia, malondialdehyde (MDA) as marker of lipid peroxidation, beta-caroten, total SH groups as marker of protein oxidation in the following intervals: between the 1st and the 3rd, between the 3rd and the 7th, between the 1st and the 7th day respectively.3. Glycaemia significantly decreased since the 1st day till the 3rd day (p < 0.05) and since the 1st day till the 7th day (p < 0.05) but it was not significantly changed since the 3rd day till the 7th day (p > 0.05).4. MDA 1st × MDA 3rd p > 0.05 insignificant change, MDA 1st × MDA 7th p < 0.001—high significant decrease, MDA 3rd × MDA 7th—p < 0.0001—very high significant decrease.5. Beta-caroten the 1st × beta-caroten the 3rd day was insignificantly changed—p > 0.05, the 3rd × the 7th day beta-caroten increased significantly—p < 0.0002, the 1st day × 7th day beta-caroten significantly increased—p < 0.0001.6. We examined the SH groups only in nine patients, due to technical problems and SH groups decrease on the 3rd day (p < 0.005).7. In 18 amantadine sulphate subgroups (randomly selected), there was 5.5% lethality and mean outcome GCS (outGCS) 9.83±3.8, while lethality of the control subgroup (n=14) was 42.9%, mean outGCS 6.28±3.5. 相似文献
99.
目的:观察长期运动对大鼠肝脏自由基的影响,及不同性别间可能的差异。方法:SD大鼠随机分为雄性运动组(MEG),雄性静息组(MSG),雌性运动组(FEG),雌性静息组(FSG)。运动组游泳每天2小时,每周游泳5d(休息2d),持续3个月。期满后检测肝脏OH·及MDA水平,并分析性别差异。结果:抑制OH·能力FEG(18.78±2.77U/mg pro)显著高于FSG(1g.36±3.94U/mg pro)(P〈0.01),MEG(16.56±3.44U/mg pro)显著高于MSG(12.85±2.00U/mg pro)(P〈0.05);MDA含量FEG(0.499±0.095nmol/mg pro)显著低于FSG(0.625±0.073nmol/mg pro)(P〈0.01),MEG与MSG之间无显著差异;肝脏OH·与MDA水平无显著相关。结论:长期运动可降低雌雄大鼠肝脏OH·含量,无性别差异;降低雌性但不影响雄性肝脏脂质过氧化水平,性别差异明显。 相似文献
100.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation. 相似文献