首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3743篇
  免费   321篇
  国内免费   474篇
  2023年   42篇
  2022年   51篇
  2021年   67篇
  2020年   101篇
  2019年   100篇
  2018年   112篇
  2017年   113篇
  2016年   114篇
  2015年   143篇
  2014年   143篇
  2013年   197篇
  2012年   111篇
  2011年   121篇
  2010年   137篇
  2009年   190篇
  2008年   200篇
  2007年   204篇
  2006年   204篇
  2005年   170篇
  2004年   152篇
  2003年   146篇
  2002年   136篇
  2001年   102篇
  2000年   117篇
  1999年   77篇
  1998年   93篇
  1997年   91篇
  1996年   91篇
  1995年   107篇
  1994年   85篇
  1993年   85篇
  1992年   62篇
  1991年   62篇
  1990年   56篇
  1989年   74篇
  1988年   71篇
  1987年   57篇
  1986年   48篇
  1985年   63篇
  1984年   50篇
  1983年   28篇
  1982年   39篇
  1981年   38篇
  1980年   24篇
  1979年   20篇
  1978年   15篇
  1977年   8篇
  1976年   7篇
  1973年   7篇
  1972年   3篇
排序方式: 共有4538条查询结果,搜索用时 409 毫秒
141.
Several screening methods at the so-called ready biodegradability level are suitable to test poorly soluble substances. Typical for these tests is that mineralization is evaluated from monitoring oxygen uptake or carbon dioxide production. Unfortunately, they suffer from a rather low precision in the calculated percentage of mineralization caused by subtracting a too high inoculum control measurement from the response in the test system. Criteria for blank oxygen consumption, due to the metabolic activity of the inoculum, are proposed from which maximum amounts of activated sludge or secondary effluent per litre test medium can be derived to be used as an appropriate inoculum. Both for current and future standardized tests the precision of the method can be kept within acceptable margins. Inoculum material was sampled from 40 communal biological waste water treatment plants. From endogenous respiration rates it was derived that the concentration of secondary effluent in the Closed Bottle Test can be increased up to 50 mL/L but that in respirometry tests inoculated with activated sludge the appropriate concentration is 10 mg/L dry matter or below, depending of the design of the test system.List of abbreviations BOD biological oxygen demand - CBT Closed Bottle Test - C as inoculum concentration in mg dry solids of activated sludge per litre test medium - C ef inoculum concentration in ml secondary effluent per litre test medium - C ss dry weight content of activated sludge (g/L) - CFU colony forming units - DO7d dissolved oxygen concentration (mg/L) after 7 days - ISO International Organization for Standardization - NEN Dutch Organization for Standardization - O c oxygen capacity in mg oxygen per litre vessel volume - OECD Organisation for Economic Co-operation and Development - Ox as oxygen consumption after one week in mg oxygen per mg dry weight activated sludge - Ox ef oxygen consumption after one week in mg oxygen per mL secondary effluent - Ox ef [n] oxygen consumption after one week in mg oxygen per n mL secondary effluent - Ox flask oxygen uptake in mg per litre flask volume - RBT Ready Biodegradability Test - SLR sludge loading rate in kg O2/kg dry weight·d - ThOD theoretical oxygen demand - TPCBT Two Phase Closed Bottle Test - V a volumes of air and water per litre vessel - V w volume, respectively - a concentration of oxygen in air at 20° C and 101.5 kPa - s saturation oxygen concentration in te aqueous phase  相似文献   
142.
The role of maintenance respiration in plant growth   总被引:28,自引:8,他引:20  
Abstract Plant growth is the balance of photosynthetic gains and respiratory losses, and it is therefore essential to consider respiration in analyses of plant productivity. The partitioning of dark respiratory losses into two functional components, a growth component and a maintenance component, has proved useful. The growth loss is that associated with synthesis of new biomass while the maintenance loss is that associated with maintenance of existing biomass. Experimental evidence indicates that the respiratory cost of maintenance in herbaceous plants is about equal to the cost of growth over a growing season, with daily maintenace expenditures less important in the small, rapidly growing plant but increasing in significance as plant size increases and the relative growth rate decreases. Because it is such a large fraction of the total carbon budget of a plant, any variations in maintenance requirements may result in significant alterations in productivity. In the present work the theoretical and empirical bases of maintenance respiration are described: magnitudes of maintenance expenditures are summarized; and applications to models of plant growth and productivity are discussed. It is concluded that the costs of maintenance should be included in analyses of plant growth.  相似文献   
143.
The oxidation of NADPH and NADH was studied in the light and in the dark using sonically derived membrane vesicles and osmotically shocked spheroplasts. These two types of cell-free membrane preparations mostly differ in that the cell and thylakoid membranes are scrambled in the former type and that they are more or less separated in the latter type of preparations. In the light, using both kinds of preparations, each of NADPH and NADH donates electrons via the plastoquinone-cytochrome bc redox complex (Qbc redox complex) to the thylakoid membrane-bound cytochrome c-553 preoxidized by a light flash and to methylviologen via Photosystem I. NADPH donates electrons to the thylakoid membrane via a weakly rotenone-sensitive dehydrogenase to a site that is situated beyond the 3(3′,4′-dichlorophenyl)-1,1-dimethylurea sensitive site and before plastoquinone. Ferredoxin and easily soluble cytoplasmic proteins are presumably not involved in light-mediated NADPH oxidation. Inhibitors of electron transfer at the Qbc redox complex as the dinitrophenylether of 2-iodo-4-nitrothymol, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2-n-heptyl-4-hydroxy-quinone-N-oxide are effective, but antimycin A and KCN are not. The oxidation of NADH showed comparable sensitivity to these inhibitors. However, the oxidation of NADH is antimycin-A-sensitive regardless of the kind of membrane preparation used, indicating that in this case electrons are donated to a different site on the thylakoid membrane. In the dark, NADPH and NADH donate electrons at sites that behave similar to those of light-mediated oxidation, indicating that the initial steps of electron transfer are situated at the thylakoid membranes. However, NADPH oxidation is in some cases not sensitive to inhibitors active at the Qbc redox complex. It is concluded that O2 reduction takes place at two different sites, one partly developed in vitro, situated near the rotenone-sensitive NADPH dehydrogenase, and another, highly KCN-sensitive one, situated beyond the Qbc redox complex and used in vivo. The terminal oxygen-reducing step of NADPH and NADH oxidation in the dark showed a preparation-dependent sensitivity for KCN, more than 80% inhibition in sonically derived membrane vesicles and less than 30% inhibition in osmotically shocked spheroplasts. From this result we tentatively conclude that the highly KCN-sensitive oxidase is not necessarily located at the thylakoid membrane and could be located at the cytoplasmic membrane.  相似文献   
144.
Green plant cells can generate ATP in both chloroplasts and mitochondria. Hence the effect of photosynthesis on dark mitochondrial respiration can be considered at a variety of levels. Turnover of ceitric acid cycle dehydrogenases, which is essential for supply of carbon skeletons for amino acid synthesis, seems to be largely unaffected during photosynthesis. The source of carbon for the anaplerotic function of the citric acid cycle in light is however, not known with certainty. NADH generated in these reactions is probably not oxidised via the mitochondrial electron transfer chain coupled to ATP synthesis. However, it may be oxidised by the alternative cyanide-insensitive pathway, exported to the cytosol via the oxaloacetate-malate dicarboxylate shuttle or directly utilised for cytosolic nitrate reduction. Oxidation of succinate via cytochrome oxidase may also be similarly inhibited in light. Whether increase in the cytosolic ATP/ADP ratio in light is responsible for the inhibition of mitochondrial electron transfer to O2 is not clearly established, because the ATP/ADP ratio is reported to be already quite high in the dark. Effective collaboration between photophosphorylation and oxidative phosphorylation in order to maintain the cytosolic energy charge at a present high level is discussed.  相似文献   
145.
Summary The effects of disturbing (cultivating) and stockpiling prairie grassland topsoil on microbial activity, microbial biomass C, plant production and decomposition potentials were studied by measuring CO2 efflux from unamended and glucose amended soil in the laboratory and by conducting a pot and litter bag study in the greenhouse. Stockpiling appeared to have very little effect on soil respiratory activity, but did reduce the microbial biomass C levels. Throughout the 3 year study the microbial biomass C in the surface soil of the stockpile was less than that in the undisturbed soil, while the biomass C in soil at the bottom of the stockpile was at no time significantly different from that in the undisturbed soil. The reduction in microbial biomass C in the surface soil immediately after stockpiling was attributed to a decrease in the soil organic C levels caused by a slight dilution of the topsoil with subsurface mineral soil, and the exposure of the stockpile surface to extreme environmental conditions. Soils from all depths of the stockpile responded more slowly to the addition of glucose than soil from the undisturbed and cultivated treatments even when no differences in biomass were detected between the undisturbed and stockpiled soils. It is postulated that the rapidity with which the soil microbial biomass responds to glucose additions may be a sensitive indicator of stress on the soil biological components. The reduction in biomass after storage for 1 year had no adverse effects on the decomposition or primary production potential of the stored soil. Rather, shoot production by fall rye was stimulated in the stored topsoil, presumably a result of better N nutrition.  相似文献   
146.
The regularity of appearance of cyanide-resistant respiration and cytochrome d in various bacteria as well as the relationship between the degree of resistance of respiration to cyanide and cytochrome d content was studied. Bacteria able to synthesize cyanide-resistant respiration were shown to appear during transition of culture to the stationary phase of growth caused by the exhaustion of carbon source. No regulatory of appearance of cytochrome d was observed. There is no correlation between the degree of resistance to cyanide and cytochrome d content. It was concluded that the cyanide-resistant respiration of bacteria and eukaryotic microorganisms may be associated with the functioning of a non-cytochrome nature oxidase.  相似文献   
147.
SYNOPSIS. Shale oil retort water is obtained by centrifuging the oil/water emulsion produced by oil shale retorting. The ciliate Tetrahymena pyriformis was exposed to retort water; 2, 1, and 0.5% initially increased motility; longer exposures decreased motility. Three, 4, and 5% all decreased motility. Cell lysis was directly related to concentration; after 24 h, population densities were 0, 10, and 25% of controls for 2, 1, and 0.5% retort water, respectively. Oxygen consumption paralleled the motility pattern: at lower concentrations it increased initially but decreased with extended exposures while at higher concentrations it decreased rapidly. The most striking cytologic alteration of cells exposed to the toxicant occurred in the membranes; alterations of mucocysts and glycogen content were also observed, but mitochondrial changes were not. Population growth was affected at much lower concentrations than the other test indices. The growth of test populations reached a plateau at values inversely related to concentration: concentrations <0.4% had no effect on growth rate.  相似文献   
148.
Two methods (whole-plant growth analysis and gas exchange) were used to measure the response of Psophocarpus tetragonolobus (L.) DC cultivar UPS 99 to the environment. This plant had an optimal temperature for root growth of 25°C, its rate of acetylene reduction (when inoculated with Rhizobium, strain RRIM 56) was maximal at 30°C and it required an atmospheric temperature of about 35°C for optimal shoot growth. Maximum water-use efficiency was ca. 33 mg CO2·g H2O-1. The rate of photosynthesis reached a plateau at 900 vpm CO2-this condition also gave the lowest rate of transpiration. Under normal conditions, the light compensation point was at 1.7 klx, while that for CO2 was 60 vpm. Photorespiration diminished gross photosynthesis of P. tetragonolobus by forty percent. Water stress (as measured by sensitivity to slightly increased CO2 levels) caused rapid closure of stomata, and the response was remembered for up to five days.
Zusammenfassung Mit Hilfe von zwei Methoden (Wachstumsanalysen ganzer Pflanzen und Gaswechselmessungen) wurde die Reaktion von Psophocarpus tetragonolobus (L.) DC der Sorte UPS 99 auf Umwelteinflüsse ermittelt. 25°C war die optimale Temperatur für das Wurzelwachstum. Die Acetylenreduktionsrate (die Pflanzen waren geimpft worden mit Rhizobium RRIM 56) war am höchsten bei 30°C. 35°C waren notwendig für maximales Sproßwachstum. Der günstigste Wasserausnutzungskoeffizient lag bei ungefähr 33 (mg CO2·g H2O-1). Die Photosyntheseraten wurden durch Erhöhung der CO2-Konzentration gesteigert. Bei Konzentrationen über 900 vpm CO2 konnte allerdings keine weitere Steigerung mehr festgestellt werden. Bei 900 vpm CO2 waren die Transpirationsraten am niedrigsten. Unter normalen Bedingungen stellte sich der Lichtkompensationspunkt bei 1,7 klx ein. Der CO2-Kompensationspunkt lag bei 60 vpm CO2. Die Photorespiration verminderte die Photosynthese von P. tetragonolobus um 40%. Wasserstreß vergrößerte die Empfindlichkeit der Stomata gegenüber etwas erhöhten CO2-Konzentrationen (die Stomata schließen). Diese Empfindlichkeit war bis zu 5 Tagen nach der Streßbehandlung noch meßbar.
  相似文献   
149.
A Bacillus sp., isolated by anaerobic enrichment on a o-phthalic acid-nitrate medium, grew either aerobically or anaerobically on phthalic acid. Cells grown anaerobically on phthalate immediately oxidized phthalate and benzoate with nitrate, whereas aerobic oxidation only occurred after a lag period and was inhibited by chloramphenicol. 2-Fluoro-and 3-fluorobenzoate were formed from 3-fluorophthalate by cells grown anaerobically on phthalate. Aerobically grown cells immediately oxidized phthalate, benzoate, 3-hydroxybenzoate and gentisate with oxygen. The aerobic and anaerobic route of catabolism of phthalate may thus share an initial decarboxylation to benzoate. This is the first report of the anaerobic dissimilation of phthalic acid by a pure bacterial culture.  相似文献   
150.
P/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P/2e ratios were calculated, using the Y ATP max values determined for aerobic cultures. When succinate was the carbon and energy source the average P/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture 0.9. With gluconate as carbon and energy source the average P/2e values of the gluconate-limited with nitrate as electron acceptor and nitrate limited cultures were 0.9 and 1.1, respectively.H+/O ratios measured in cells obtained from sulphate-, succinate, nitrite-, gluconate-and nitratelimited cultures yielded respective average values of 3.4, 4.5, 3.5, 4.8 and 6.2 for endogenous substrates. From our data we conclude that sulphate-and nitritelimitation causes the loss of site I phosphorylation. Nitrite has no influence on the maximum growth yield on ATP. We propose that metabolism in heterotrophically grown cells of Paracoccus dentrificans is regulated on the level of phosphorylation in the site I region of the electron transport chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号