首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   18篇
  国内免费   4篇
  2023年   18篇
  2022年   17篇
  2021年   18篇
  2020年   19篇
  2019年   26篇
  2018年   28篇
  2017年   22篇
  2016年   25篇
  2015年   13篇
  2014年   17篇
  2013年   16篇
  2012年   12篇
  2011年   11篇
  2010年   20篇
  2009年   9篇
  2008年   8篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
排序方式: 共有297条查询结果,搜索用时 921 毫秒
61.
Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi‐omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus–Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up‐regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus–G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS.  相似文献   
62.
63.
《Cell reports》2020,30(4):959-968.e3
  1. Download : Download high-res image (93KB)
  2. Download : Download full-size image
  相似文献   
64.
65.
66.
For the present study we asked whether the endometrial fluid lipidomic may be a useful approach to predict endometrial receptivity in freeze‐all cycles. For this case‐control study, endometrial fluid samples were collected from 41 patients undergoing freeze‐all cycles. Samples were split depending on the pregnancy outcome: positive group (n = 24) and negative group (n = 17). Data were acquired by the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS‐DA) were applied. A list of potential biomarker ion ratios was obtained and the values were used to build a receiver operating characteristic (ROC) curve to predict pregnancy success. The lipid categories were attributed by LIPID MAPS database. Ion ratios were established according to their correlations and used for the analysis. The PCA showed a tendency of separation between the studied groups, whereas the PLS‐DA was able to clearly distinguish them. Fifteen ratios (13 hyper‐represented in the negative and two hyper‐represented in the positive group) were selected according to their importance for model prediction. These ratios were used to build the ROC curve, which presented an area under curve of 84.0% (95%CI: 69.2–97.4%; p = 0.009). These findings suggest that lipidomic profiling of endometrial fluid may be a valuable tool for identifying the time interval comprising the window of implantation.  相似文献   
67.
Mechanical wounding of Arabidopsis thaliana leaves results in modifications of most membrane lipids within 6 hours. Here, we discuss the lipid changes, their underlying biochemistry, and possible relationships among activated pathways. New evidence is presented supporting the role of the processive galactosylating enzyme SENSITIVE TO FREEZING2 in the wounding response.  相似文献   
68.
Tacrine is an acetylcholinesterase (AChE) inhibitor used as a cognitive enhancer in the treatment of Alzheimer's disease (AD). However, its low therapeutic efficiency and a high incidence of side effects have limited its clinical use. In this study, the molecular mechanisms underlying the impact on brain activity of tacrine and two novel tacrine analogues (T1, T2) were approached by focusing on three aspects: (i) their effects on brain cholinesterase activity; (ii) perturbations on electron transport chain enzymes activities of non-synaptic brain mitochondria; and (iii) the role of mitochondrial lipidome changes induced by these compounds on mitochondrial bioenergetics. Brain effects were evaluated 18 h after the administration of a single dose (75.6 μmol/kg) of tacrine or tacrine analogues. The three compounds promoted a significant reduction in brain AChE and butyrylcholinesterase (BuChE) activities. Additionally, tacrine was shown to be more efficient in brain AChE inhibition than T2 tacrine analogue and less active than T1 tacrine analogue, whereas BuChE inhibition followed the order: T1 > T2 > tacrine. The studies using non-synaptic brain mitochondria show that all the compounds studied disturbed brain mitochondrial bioenergetics mainly via the inhibition of complex I activity. Furthermore, the activity of complex IV is also affected by tacrine and T1 treatments while FoF(1) -ATPase is only affected by tacrine. Therefore, the compounds' toxicity as regards brain mitochondria, which follows the order: tacrine > T1 > T2, does not correlate with their ability to inhibit brain cholinesterase enzymes. Lipidomics approaches show that phosphatidylethanolamine (PE) is the most abundant phospholipids (PL) class in non-synaptic brain mitochondria and cardiolipin (CL) present the greatest diversity of molecular species. Tacrine induced significant perturbations in the mitochondrial PL profile, which were detected by means of changes in the relative abundance of phosphatidylcholine (PC), PE, phosphatidylinositol (PI) and CL and by the presence of oxidized phosphatidylserines. Additionally, in both the T1 and T2 groups, the lipid content and molecular composition of brain mitochondria PL are perturbed to a lesser extent than in the tacrine group. Abnormalities in CL content and the amount of oxidized phosphatidylserines were associated with significant reductions in mitochondrial enzymes activities, mainly complex I. These results indicate that tacrine and its analogues impair mitochondrial function and bioenergetics, thus compromising the activity of brain cells.  相似文献   
69.
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is controlled by glycan remodeling and p24 complexes act as cargo receptors for GPI anchor sorting into COPII vesicles. In this study, we have characterized the lipid profile of mammalian cell lines that have a defect in GPI anchor biosynthesis. Depending on which step of GPI anchor biosynthesis the cells were defective, we observed sphingolipid changes predominantly for very long chain monoglycosylated ceramides (HexCer). We found that the structure of the GPI anchor plays an important role in the control of HexCer levels. GPI anchor-deficient cells that generate short truncated GPI anchor intermediates showed a decrease in very long chain HexCer levels. Cells that synthesize GPI anchors but have a defect in GPI anchor remodeling in the ER have a general increase in HexCer levels. GPI-transamidase-deficient cells that produce no GPI-anchored proteins but generate complete free GPI anchors had unchanged levels of HexCer. In contrast, sphingomyelin levels were mostly unaffected. We therefore propose a model in which the transport of very long chain ceramide from the ER to Golgi is regulated by the transport of GPI anchor molecules.  相似文献   
70.
Bile acids (BAs) are a group of chemically related steroids recognized as regulatory molecules whose profiles can change in different physio-pathological situations. We have developed a sensitive, fast, and reproducible ultraperformance liquid chromatography/multiple reaction monitoring/mass spectrometry method to determine the tissue and sera BA profiles in different species (human, rat, and mouse) by quantifying 31 major and minor BA species in a single 21-min run. The method has been validated according to FDA guidelines, and it generally provides good results in terms of intra- and interday precision (less than 8.6% and 16.0%, respectively), accuracy (relative error measurement between -11.9% and 8.6%), and linearity (R(2) > 0.996 and dynamic ranges between two and four orders of magnitude), with limits of quantification between 2.5 and 20 nM. The new analytical approach was applied to determine BA concentrations in human, rat, and mouse serum and in liver tissue. Our comparative study confirmed and extended previous reports, showing marked interspecies differences in circulating and hepatic BA composition. The targeted analysis revealed the presence of unexpected minoritary BAs, such as tauro-alpha-Muricholic acid in human serum, thus allowing us to obtain a thorough profiling of human samples. Its great sensitivity, low sample requirements (25 μl of serum, 5 mg of tissue), and comprehensive capacity to profile a considerable number of BAs make the present method a good choice to study BA metabolism in physiological and pathological situations, particularly in toxicological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号