首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6909篇
  免费   419篇
  国内免费   250篇
  2024年   14篇
  2023年   109篇
  2022年   108篇
  2021年   188篇
  2020年   168篇
  2019年   219篇
  2018年   266篇
  2017年   189篇
  2016年   200篇
  2015年   241篇
  2014年   283篇
  2013年   752篇
  2012年   180篇
  2011年   245篇
  2010年   226篇
  2009年   262篇
  2008年   280篇
  2007年   375篇
  2006年   336篇
  2005年   316篇
  2004年   246篇
  2003年   229篇
  2002年   210篇
  2001年   174篇
  2000年   134篇
  1999年   124篇
  1998年   133篇
  1997年   128篇
  1996年   111篇
  1995年   129篇
  1994年   99篇
  1993年   76篇
  1992年   99篇
  1991年   59篇
  1990年   64篇
  1989年   76篇
  1988年   67篇
  1987年   63篇
  1986年   52篇
  1985年   59篇
  1984年   79篇
  1983年   50篇
  1982年   50篇
  1981年   32篇
  1980年   25篇
  1979年   19篇
  1978年   9篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
排序方式: 共有7578条查询结果,搜索用时 265 毫秒
991.
CaMBP-10的cDNA克隆和表达及钙调素结合活性分析   总被引:4,自引:0,他引:4  
采用RT PCR法 ,从中国大白菜中分离了编码CaMBP 1 0的cDNA克隆 .该cDNA全长 4 96bp ,编码 92个氨基酸 ,3′端含有 2 1 6bp的非编码区和poly A尾 .将此BP 1 0cDNA的成熟蛋白序列导入表达质粒pET1 5b并转化至大肠杆菌E .coliBL2 1 (DE3)condonplus RIL进行表达 .以免疫印迹和钙调素结合分析法对重组BP 1 0进行鉴定 ,证明其保持了与天然BP 1 0相同的钙调素结合活性 .氨基酸和核苷酸序列分析结果显示 ,它与植物转脂蛋白高度同源 ,特别是含有 8个保守半胱氨酸 .BP 1 0与转脂蛋白之间具极为相似的理化性质如分子量、等电点、热稳定性等 .据此认为 ,CaMBP 1 0是转脂蛋白家族的新成员 ,Ca2 + CaM信号系统可能参与植物转脂蛋白功能的调节  相似文献   
992.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation contained S- and R-forms of molecules. The structural components of the LPS molecule—lipid A, core oligosaccharide, and O-specific polysaccharide—were obtained in the individual state and characterized. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as 2-amino-2,6-dideoxygalactose (FucN) and 3-amino-3,6-dideoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzymatic assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   
993.
Damage to DNA and disruption of membrane integrity by lipid peroxidation processes are two of the proposed causes of UV‐B‐induced growth inhibition in plants. However, the relative significance of these different types of molecular damage has not been established in experiments carried out under realistic physiological conditions. Plants of Gunnera magellanica (a native herb from southern Patagonia) were exposed to a gradient of biologically effective UV‐B doses (from 0 to 6.5 kJ m?2 d?1 of UV‐Bbe) in a greenhouse study. Leaf expansion was measured and sensitive techniques were used to detect damage to DNA (in the form of cyclobutane pyrimidine dimers; CPDs) and lipid peroxidation (via electronic‐paramagnetic resonance; EPR). Leaf expansion decreased and the CPD density increased with increasing UV‐B doses, but the degree of lipid peroxidation remained unaffected. The highest UV‐B dose induced a transient oxidative stress situation (as evaluated using the ratio of ascorbyl radical to ascorbate, A·/AH), which was rapidly controlled by an increase in the ascorbate pool. The present results suggest that under a range of UV‐Bbe doses that overlaps the range of doses that G. magellanica plants experience in their natural environment, growth inhibition is better explained by DNA damage than by increased lipid peroxidation.  相似文献   
994.
The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro‐Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl2, respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl2, whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl2. Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl2 after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl2, but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl2 when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl2, whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl2. The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl2. However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl2 from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.  相似文献   
995.
Planar lipid bilayers, e.g., black lipid membranes (BLM) and solid supported membranes (SSM), have been employed to investigate charge movements during the reaction cycle of P-type ATPases. The BLM/SSM method allows a direct measurement of the electrical currents generated by the cation transporter following chemical activation by a substrate concentration jump. The electrical current transients provides information about the reaction mechanism of the enzyme. In particular, the BLM/SSM technique allows identification of electrogenic steps which in turn may be used to localize ion translocation during the reaction cycle of the pump. In addition, using the high time resolution of the technique, especially when rapid activation via caged ATP is employed, rate constants of electrogenic and electroneutral steps can be determined. In the present review, we will discuss the main results obtained by the BLM and SSM methods and how they have contributed to unravel the transport mechanism of P-type ATPases.  相似文献   
996.
ATP-sensitive K+ channels play an important role in regulating membrane potential during metabolic stress. In this work we report the effect of ATP and ADP-Mg on a K+ channel present in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity was found to decrease in presence of ATP 100 μM on the cytoplasmic side and was totaly inhibited at ATP concentrations greater than 0.25 mM. The effect appeared voltage dependent, suggesting that the ATP binding site was becoming available upon channel opening. Channel activity was suppressed by the nonhydrolyzable ATP analog (ATPγS), ruling out a phosphorylation-based mechanism. Notably addition of 2.5 mM ADP-Mg to the cytosolic side increased the channel open probability at negative potentials. We conclude that the large conductance voltage-gated cation channel in RER of rat hepatocytes is an ATP and ADP sensitive channel likely to be involved in cellular processes such as Ca2+ signaling or control of membrane potential across the endoplasmic reticulum membrane.  相似文献   
997.
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.  相似文献   
998.
We used real-time atomic force microscopy (AFM) to visualize the interactions between supported lipid membranes and well-defined surfactin analogs, with the aim to understand the influence of geometry, charge and hydrophobicity. AFM images of mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers recorded after injection of cyclic surfactin at 1 mM, i.e. well-above the critical micelle concentration, revealed a complete solubilization of the bilayers within 30 min. A linear analog having the same charge and acyl chains was able to solubilize DOPC, but not DPPC, and to promote redeposition leading eventually to a new bilayer. Increasing the charge of the polar head or the length of the acyl chains of the analogs lead to the complete solubilization of both DOPC and DPPC, thus to a stronger membrane activity. Lastly, we found that at low surfactin concentrations (40 µM), DPPC domains were always resistant to solubilization. These data demonstrate the crucial role played by geometry, charge and hydrophobicity in modulating the membrane activity (solubilization, redeposition) of surfactin. Also, this study suggests that synthetic analogs are excellent candidates for developing new surfactants with tunable, well-defined properties for medical and biotechnological applications.  相似文献   
999.
A subgroup of neutral lipid storage disease has been recently associated with myopathy (NLSDM) and attributed to mutations in the gene (PNPLA2) encoding an adipose triglyceride lipase involved in the degradation of intracellular triglycerides. Five NLSDM patients have been described thus far and we reported three additional patients. A 44-year old Iranian woman and two Italian brothers, aged 40 and 35, presented with exercise intolerance and proximal limb weakness, elevated CK levels, and Jordan’s anomaly. Muscle biopsies showed marked neutral lipid accumulation in all patients. The 10 exons and the intron-exon junctions of the PNPLA2 gene were sequenced. Two novel homozygous mutations in exon 5 of PNPLA2 gene were found (c.695delT and c.542delAC). Both mutations resulted in frameshifts leading to premature stop codons (p.L255X and p.I212X, respectively). These mutations predict a truncated PNPLA2 protein lacking the C-terminal hydrophobic domain. These findings indicate that NLSDM is rare, but genetically heterogeneous.  相似文献   
1000.
Four IgE-binding epitopes have been characterized that cover a large area (40%) of the molecular surface of lipid transfer protein allergens of Rosaceae (apple, peach, apricot, and plum). They mainly correspond to electropositively charged regions protruding on the molecular surface of the modeled apple (Mal d 3), apricot (Pru ar 3), and plum (Pru d 3) allergens. Two of these epitopes consist of consensus epitopes structurally conserved among the lipid transfer protein allergens from the Rosaceae. Their occurrence in different lipid transfer protein allergens presumably accounts for the IgE-binding cross-reactivity often observed among different Rosaceae fruits. In this respect, LTP consist of phylogenetically- and structurally-related pan allergens. However, the IgE-binding cross-reactivity due to fruit lipid transfer protein has varying degrees of clinical relevance and this cross-reactivity is not necessarily accompanied by a cross-allergenicity to the corresponding fruits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号