首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   78篇
  国内免费   22篇
  2023年   7篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   17篇
  2018年   10篇
  2017年   17篇
  2016年   15篇
  2015年   16篇
  2014年   21篇
  2013年   18篇
  2012年   9篇
  2011年   14篇
  2010年   10篇
  2009年   12篇
  2008年   17篇
  2007年   6篇
  2006年   15篇
  2005年   11篇
  2004年   16篇
  2003年   9篇
  2002年   12篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   9篇
  1997年   10篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
31.
Development of effective resuscitation agents for blood-loss replacement in trauma or surgery is extremely important despite substantial improvements in screening methods of blood from human donors. This paper reports the design and synthesis of peptides that mimic the natural environment of the heme group in myoglobin (Mb) and in the - and -subunits of human adult hemoglobin (Hb). The designs were based on the fact that the heme group in the aforementioned proteins is sandwiched between helices E and F. Fifteen test peptides and six control peptides were synthesized, and their ability to form stable complexes with heme was investigated. It was found that none of the control peptides or proteins was able to bind heme. However, each of the peptides that were designed to mimic the E--F helices, and even shorter designs, which removed from this region residues that do not contribute to contacts with the heme group, were each able to bind one mole of heme per mole of peptide forming peptide–heme complexes that were stable to manipulation and behaved as single molecular species. Oxygen binding measurements on the reduced peptide–heme complexes showed that these compounds bind oxygen and give visible spectra that were typical of oxygenated heme-proteins. In oxygen binding measurements done under different partial pressures of oxygen, the heme–peptide complexes gave hyperbolic oxygen-saturation curves, but showed slight differences in their P50 values. The P50 values ranged from 3.8 mmHg for the heme–peptide B7 complex to 13.7 mmHg for the heme–peptide D13 complex (under the same conditions, P50 values for Hb and Mb were 34.0 and 5.5 mmHg, respectively). It is concluded that peptide constructs designed to mimic the heme-binding regions of Mb or the Hb subunits were able to form coordinate 1:1 complexes with heme, and these complexes bind oxygen in a manner expected for single subunit heme proteins.  相似文献   
32.
A soil with aged contamination from lubricating oil (LO) and polychlorinated biphenyls (PCBs) was treated in a bioslurry reactor to investigate in-soil biosurfactant production by Pseudomonas aeruginosa, the most abundant indigenous, culturable, hydrocarbon-degrading microorganism. After 2 days of growth on LO, a depletion of nitrogen stimulated the production and accumulation of rhamnolipids to levels roughly 20 times the critical micelle concentration. Surface tensions and concentrations of monorhamnolipid and dirhamnolipid, PCBs, and total petroleum hydrocarbons (TPH) were measured in a slurry filtrate. Soil-bound PCBs and TPH were also quantified. Rhamnolipid production was observed within 1 to 2 days after nitrogen depletion in each of the 10 batches tested. By day 6, total rhamnolipid concentrations increased from below detection to average values over 1,000 mg/L, which caused over 98% of soil-bound PCBs and over 99% of TPH to be emulsified and recovered in the filtrate. After 70 days, rhamnolipid concentrations were only reduced by 15%, because of nitrogen-limited rates of rhamnolipid biodegradation. The results show that in-soil biosurfactant production can be stimulated in a controlled way with nutrient limitation and can be used to achieve soil washing.  相似文献   
33.
Protein fragment domains identified using 2D gel electrophoresis/MALDI-TOF.   总被引:2,自引:0,他引:2  
We previously reported a protein expression profiling experiment conducted on human pancreatic tissues using 2D gel electrophoresis and mass spectrometry. Here, 18 spots that were identified in the gel at molecular weights more than 10 kDa lower than database values are characterized. The matrix-assisted laser desorption/ionization mass spectrometry coverage is sufficient to identify the protein region present in each spot. Most of the fragments correspond to processed chains and known structural or functional domains, which may result from limited proteolysis.  相似文献   
34.
Intoxication with Aconitum napellus is rare in our regions. Aconite alkaloids can cause ventricular arrhythmia by a prolonged activation of sodium channels. Because the margin of safety is low between the analgesic and toxic dose, intoxication is not rare when Aconite is used in herbal medicine. We present a case in which a 39-year-old male was accidentally intoxicated with Aconite. Even though no antidote or adequate therapy is available he was successfully resuscitated. (Neth Heart J 2008;16: 96-9.)  相似文献   
35.
为了解析分支酸变位酶和预苯酸脱氢酶在大肠杆菌T蛋白的定位,根据T蛋白限制性水解结果,分段克隆分支酸变位酶和预苯酸脱氢酶.T蛋白限制性水解结果显示,第93位氨基酸是大片段的N端,分段克隆的1~93 片段测定得到分支酸变位酶活性,96~373片段得到了预苯酸脱氢酶活性.研究表明,大肠杆菌T蛋白由两个独立结构域组成,N端93个氨基酸组成了分支酸变位酶,C端277个氨基酸组成了预苯酸脱氢酶.  相似文献   
36.
37.
Candidatus Liberibacter species are Gram‐negative bacteria that live as phloem‐limited obligate parasites in plants, and are associated with several plant diseases. These bacteria are transmitted by insects called psyllids, or jumping plant lice, which feed on plant phloem sap. Citrus huanglongbing (yellow shoot) or citrus greening disease is associated with three different species of Ca. Liberibacter – Ca. L. asiaticus, Ca. L. africanus and Ca. L. americanus – all originally found on different continents. Ca. L. asiaticus is the most severe pathogen, spread by Asian citrus psyllid Diaphorina citri and causing devastating epidemics in several countries. Ca. L. africanus occurs in Africa where it is spread by the African citrus psyllid Trioza erytreae. Ca. Liberibacter solanacearum is associated with diseases in several solanaceous plants, and transmitted by potato psyllid Bactericera cockerelli. Zebra chip disease is causing large damage in potato crops in North America. In Europe Ca. Liberibacter solanacearum is associated with diseases of the Apiaceae family of plants, carrot and celery, and transmitted by psyllids Trioza apicalis and Bactericera trigonica. When Ca. Liberibacter is suspected as the disease agent, the diagnosis is confirmed by DNA‐based detection methods. Ca. Liberibacter‐associated plant diseases can be controlled by using healthy plant propagation material, eradicating symptomatic plants, and by controlling the psyllid populations spreading the disease.  相似文献   
38.
Hatching in the amphibian Xenopus laevis involves release of an embryo-secreted hatching enzyme, a protease, which weakens the envelope surrounding the embryo. The envelope is not totally solubilized, which infers that only selected envelope components are hydrolyzed by the enzyme. The susceptibility of the glycoprotein components composing the envelope to hydrolysis by the hatching enzyme was investigated. Isolated envelopes in various physical states, ie, particulate and solubilized, were treated with the hatching enzyme, and the resulting envelope hydrolysis products were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The susceptibility of the envelope components to proteolysis was not a function of the state of the envelope. The envelope components most susceptible to proteolysis were the 125K and 11 8K components followed by the 60K and 71 – 77K components. These components are minor constituents of the envelope. The major constituents, 33K and 40K, were relatively resistant to hydrolysis by the hatching enzyme. From these observations, we infer that the envelope components hydrolyzed are components that link or bind together the major structural elements of the envelope, eg, the 33K and 40K components. Selective destruction of the components required for maintaining the structural integrity of the envelope, eg, the “nuts and bolts” of the structure, permits a weakening of the envelope that allows the embryo to hatch without having to destroy totally (hydrolyze) the envelope.  相似文献   
39.
Cassava (Manihot esculenta Crantz), a perennial woody shrub, is known to be highly productive under favourable conditions and produce reasonably well under adverse conditions where other crops fail. Using constant heat sap flow sensors, sap flow density (F d ) of cassava was monitored for 10 days in December 2002. Sap flow was highly correlated (R 2 =0.72, P<0.05) to incoming solar radiation (R s) than to other climatic factors. Using cross-correlation analysis, no time shift was detected between F d and solar radiation, whereas vapour pressure deficit (VPD) lags F d by 110 min. Solar radiation and VPD together explained 83% of diurnal variation in sap flow. Whole-plant transpiration ranged from 0.8 to 1.2 mm day−1 and daily canopy conductance (g c), computed based on the inverted Penman–Monteith model, varied between 0.7 and 2.1 mm s−1 (mean = 1.4 ± 0.5 mm s−1). For the measurement period, characterized by high evaporative demand coupled with low available soil water, transpiration accounted for 21% of the available energy and was only able to meet 24% of the atmospheric water demand. Average decoupling factor (Ω) of 0.05±0.02 estimated suggested that a 10% change in g c may lead to more than 9% change in transpiration which further supports the notion that stomata play significant role in regulating cassava water use compared to other known mechanisms. Beyond light saturation (R s >300 W m−2) and at higher VPD (>1.0 kPa), wind effects on the canopy transpiration under water stress condition were low, while VPD explains 94% of the observed variance in daily canopy conductance.  相似文献   
40.
The intrinsic cytotoxicity of cell‐free haemoglobin (Hb) has hampered the development of reliable Hb‐based blood substitutes for over seven decades. Notably, recent evidence shows that the Hb deploys this cytotoxic attack against invading microbes, albeit, through an unknown mechanism. Here, we unraveled a rapid molecular reprogramming of the Hb structure‐function triggered by virulent haemolytic pathogens that feed on the haem‐iron. On direct contact with the microbe, the Hb unveils its latent antimicrobial potency, where multiple antimicrobial fragments are released, each harbouring coordinated ‘dual‐action centres’: microbe binding and pseudoperoxidase (POX) cycle activity. The activated Hb fragments anchor onto the microbe while the juxtaposed POX instantly unleashes a localized oxidative shock, killing the pathogen‐in‐proximity. This concurrent action conceivably restricts the diffusion of free radicals. Furthermore, the host astutely protects itself from self‐cytotoxicity by simultaneously releasing endogenous antioxidants. We found that this decryption mechanism of antimicrobial potency is conserved in the ancient invertebrate respiratory protein, indicating its fundamental significance. Our definition of dual‐antimicrobial centres in the Hb provides vital clues for designing a safer Hb‐based oxygen carrier blood substitute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号