首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7767篇
  免费   602篇
  国内免费   552篇
  8921篇
  2023年   102篇
  2022年   98篇
  2021年   142篇
  2020年   193篇
  2019年   256篇
  2018年   257篇
  2017年   215篇
  2016年   197篇
  2015年   261篇
  2014年   353篇
  2013年   515篇
  2012年   264篇
  2011年   335篇
  2010年   271篇
  2009年   337篇
  2008年   337篇
  2007年   331篇
  2006年   314篇
  2005年   294篇
  2004年   260篇
  2003年   232篇
  2002年   232篇
  2001年   216篇
  2000年   204篇
  1999年   189篇
  1998年   195篇
  1997年   169篇
  1996年   162篇
  1995年   161篇
  1994年   146篇
  1993年   136篇
  1992年   127篇
  1991年   117篇
  1990年   128篇
  1989年   93篇
  1988年   105篇
  1987年   91篇
  1986年   73篇
  1985年   109篇
  1984年   117篇
  1983年   87篇
  1982年   89篇
  1981年   79篇
  1980年   57篇
  1979年   46篇
  1978年   45篇
  1977年   44篇
  1975年   28篇
  1974年   27篇
  1973年   31篇
排序方式: 共有8921条查询结果,搜索用时 0 毫秒
1.
2.
The design and characteristics of inexpensive and simply constructed equal-energy response photosynthetic irradiance sensors is described for use particularly where several cells are required in comparative ecological studies either above or below water. The dimensions of the sensors can be changed proportionally to suit different applications or components. The response of the sensor to irradiance at varying angles corresponds very closely to that required by the cosine law. The sensor is comparatively insensitive to other environmental variables in field use and gave a stable output; the long term drift was proportional to electrical output but in continuous use, drift is regular and could reach -0.08 year-1 of the total. The spectral range and cosine response is discussed in comparison to other more expensive (x 5–10) commercially available, sensors and to local standards.  相似文献   
3.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
4.
5.
6.
Metabolomic investigation of the freezing-tolerant Arabidopsis mutant esk1 revealed large alterations in polar metabolite content in roots and shoots. Stress metabolic markers were found to be among the most significant metabolic markers associated with the mutation, but also compounds related to growth regulation or nutrition. The metabolic phenotype of esk1 was also compared to that of wild type (WT) under various environmental constraints, namely cold, salinity and dehydration. The mutant was shown to express constitutively a subset of metabolic responses which fits with the core of stress metabolic responses in the WT. But remarkably, the most specific metabolic responses to cold acclimation were not phenocopied by esk1 mutation and remained fully inducible in the mutant at low temperature. Under salt stress, esk1 accumulated lower amounts of Na+ in leaves than the WT, and under dehydration stress its metabolic profile and osmotic potential were only slightly impacted. These phenotypes are consistent with the hypothesis of an altered water status in esk1 , which actually exhibited basic lower water content (WC) and transpiration rate (TR) than the WT. Taken together, the results suggest that ESK1 does not function as a specific cold acclimation gene, but could rather be involved in water homeostasis.  相似文献   
7.
8.
9.
10.
ABSTRACT

With countless “natural” experiments triggered by the COVID-19-associated physical distancing, one key question comes from chronobiology: “When confined to homes, how does the reduced exposure to natural daylight arising from the interruption of usual outdoor activities plus lost temporal organization ordinarily provided from workplaces and schools affect the circadian timing system (the internal 24 h clock) and, consequently, health of children and adults of all ages?” Herein, we discuss some ethical and scientific facets of exploring such natural experiments by offering a hypothetical case study of circadian biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号