首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21327篇
  免费   2075篇
  国内免费   3369篇
  2024年   29篇
  2023年   343篇
  2022年   401篇
  2021年   560篇
  2020年   743篇
  2019年   837篇
  2018年   846篇
  2017年   812篇
  2016年   848篇
  2015年   793篇
  2014年   943篇
  2013年   1437篇
  2012年   792篇
  2011年   949篇
  2010年   795篇
  2009年   1034篇
  2008年   1110篇
  2007年   1136篇
  2006年   1056篇
  2005年   989篇
  2004年   894篇
  2003年   840篇
  2002年   722篇
  2001年   659篇
  2000年   569篇
  1999年   559篇
  1998年   467篇
  1997年   517篇
  1996年   470篇
  1995年   411篇
  1994年   379篇
  1993年   377篇
  1992年   383篇
  1991年   300篇
  1990年   313篇
  1989年   276篇
  1988年   257篇
  1987年   215篇
  1986年   200篇
  1985年   259篇
  1984年   253篇
  1983年   169篇
  1982年   235篇
  1981年   166篇
  1980年   145篇
  1979年   95篇
  1978年   50篇
  1977年   41篇
  1976年   21篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   
142.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
143.
The effect of 253.7 nm ultraviolet radiation on elongation growth, medium acidification and changes in electric potential difference between vacuole and external medium in cells of maize ( Zea mays L.) coleoptile segments was investigated. It was found that irradiation with 390, 1170, 3900 and 5 850 J m−2 UV-C (ultraviolet radiation 253.7 nm) inhibited elongation growth, whereas at 195 J m−2 stimulation of growth was observed. The administration of IAA (10−5 M ) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium, measured simultaneously with growth, showed that the exposure of the segments to UV-C caused inhibition of H+-extrusion (or stimulation of H+ uptake). The presence of IAA (10−5 M ) in the incubation medium promoted (except after 5850 J m−2 irradiation) H+-extrusion to a level comparable with that produced by IAA in non-irradiated segments. In UV-C irradiated segments the potential difference underwent significant alterations. Irradiation of coleoptile segments with 390 J m−2 caused a transient depolarization, which was fully reversible within 30 min, while at higher doses depolarization was irreversible. The hyperpolarization of the membrane potential (MP) in cells of maize coleoptile induced by IAA was completely nullified by subsequent irradiation with UV-C. It is suggested that UV-C inhibited IAA-induced growth by a mechanism independent of cell wall acidification.  相似文献   
144.
A dependence of the plasmalemma redox activity, determined by the reduction of external electron acceptors (ferricyanide, nitro-blue tetrazolium), on the energy state of the cell, which was modified by light conditions or introduction of glucose into the media, was shown on leaves of Elodea canadensis Rich. Glucose (10 m M ) and light (40 W m-2) caused hyperpolarization of the membrane potential and stimulated the redox activity of the plasmalemma. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) completely inhibited the light activation of electrogenic and redox functions of the plasmalemma. The light saturation intensity for membrane potential and ferricyanide reductase activity was 10–30% of the light saturation of photosynthesis. Membrane potential, K+ transport and plasmalemma redox activity changed in parallel in response to light and darkness and when DCMU was added. Ferricyanide reductase activity is suggested to be a simple parameter for characterizing the energy state of the cell. The functional significance of the light-induced hyperpolarization of the membrane potential is discussed.  相似文献   
145.
A soil nitrogen model was used for a 4-year simulation of nitrogen dynamics and nitrate leaching, both during grass ley growth and after ploughing a grass ley. Model results were compared with field measurements of soil mineral-N status and leaching. A soil water and heat model provided daily values for abiotic conditions, which were used as driving variables in the nitrogen simulation. Simulated values for mineral-N levels in the soil agreed well with field data for the first 3 years of the simulation. During the final year the model predicted considerably higher levels of soil mineral-N content compared with measurements. To reach the mineral-N level measured at the time of ploughing the ley, the simulated N-uptake by plants had to be increased by 8 g N m−2. Simulations of nitrate leaching suggested that estimates of leaching based on measurements in tile-drained plots can be considerably underestimated. Accurate quantification of leaching in tile-drained plots often requires additional information on water-flow paths. A substantial increase in simulated and measured values for the mineral-N content of the soil occurred after ploughing the ley. In the simulation, most of the increase was due to a high crop residue input and the absence of a growing crop after ploughing. Litter accumulations in the soil during the 4-year period contributed little to the increase in soil mineral-N.  相似文献   
146.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   
147.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   
148.
Summary The Na-dependent transport of a number of organic molecules (d-glucose,l-proline,l-alanine,l-phenylalanine) in brush-border membrane vesicles isolated from the intestine of the eel (Anguilla anguilla) was monitored by recording the fluorescence quenching of the voltage-sensitive cyanine dye 3,3-diethylthiacarbocyanine iodide (DiS-C2(5)). The experimental approach consisted of: a) generating an inside-negative membrane potential mimicking in vivo conditions: b) measuring the rate of membrane potential decay (i.e., the rate of fluorescence quenching decay) due to Na-neutral substrate cotransport. Rates of membrane potential decay showed saturation on substrate concentration andK app values (the substrate concentration giving 50% of the maximal rate) were estimated for Na-dependent transport ofd-glucose (0,099mm),l-alanine (0.516mm),l-proline (0.118mm) andl-phenylalanine (2.04mm). The influence of an inside-negative membrane potential on the affinity of the transporter for glucose and for sodium is discussed.  相似文献   
149.
Summary The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.  相似文献   
150.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号