首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11392篇
  免费   819篇
  国内免费   1216篇
  2024年   18篇
  2023年   177篇
  2022年   198篇
  2021年   371篇
  2020年   343篇
  2019年   372篇
  2018年   372篇
  2017年   310篇
  2016年   347篇
  2015年   369篇
  2014年   518篇
  2013年   710篇
  2012年   413篇
  2011年   455篇
  2010年   390篇
  2009年   496篇
  2008年   498篇
  2007年   561篇
  2006年   588篇
  2005年   530篇
  2004年   434篇
  2003年   554篇
  2002年   430篇
  2001年   362篇
  2000年   307篇
  1999年   308篇
  1998年   257篇
  1997年   268篇
  1996年   263篇
  1995年   218篇
  1994年   230篇
  1993年   225篇
  1992年   195篇
  1991年   171篇
  1990年   156篇
  1989年   154篇
  1988年   141篇
  1987年   119篇
  1986年   87篇
  1985年   92篇
  1984年   83篇
  1983年   55篇
  1982年   72篇
  1981年   49篇
  1980年   41篇
  1979年   27篇
  1978年   16篇
  1977年   18篇
  1976年   19篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
992.
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato ( Solanum lycopersicum ) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening – Nr ( Never ripe ), gr ( green ripe ), nor ( non ripening ), and rin ( ripening inhibitor ) – have enhanced lateral root formation. In contrast, the epi ( epinastic ) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene–auxin crosstalk.  相似文献   
993.
The proper spatial and temporal expression and localization of mitogen‐activated protein kinases (MAPKs) is essential for developmental and cellular signalling in all eukaryotes. Here, we analysed expression, subcellular localization and function of MPK6 in roots of Arabidopsis thaliana using wild‐type plants and three mpk6 knock‐out mutant lines. The MPK6 promoter showed two expression maxima in the most apical part of the root meristem and in the root transition zone. This expression pattern was highly consistent with ‘no root’ and ‘short root’ phenotypes, as well as with ectopic cell divisions and aberrant cell division planes, resulting in disordered cell files in the roots of these mpk6 knock‐out mutants. In dividing root cells, MPK6 was localized on the subcellular level to distinct fine spots in the pre‐prophase band and phragmoplast, representing the two most important cytoskeletal structures controlling the cell division plane. By combining subcellular fractionation and microscopic in situ and in vivo co‐localization methods, MPK6 was localized to the plasma membrane (PM) and the trans‐Golgi network (TGN). In summary, these data suggest that MPK6 localizing to mitotic microtubules, secretory TGN vesicles and the PM is involved in cell division plane control and root development in Arabidopsis.  相似文献   
994.
Fluorescent tagging of proteins and confocal imaging techniques have become methods of choice in analysing the distributions and dynamic characteristics of proteins at the subcellular level. In common use are a number of strategies for transient expression that greatly reduce the preparation time in advance of imaging, but their applications are limited in success outside a few tractable species and tissues. We previously developed a simple method to transiently express fluorescently‐tagged proteins in Arabidopsis root epidermis and root hairs. We describe here a set of Gateway‐compatable vectors with fluorescent tags incorporating the ubiqutin‐10 gene promoter (PUBQ10) of Arabidopsis that gives prolonged expression of the fluorescently‐tagged proteins, both in tobacco and Arabidopsis tissues, after transient transformation, and is equally useful in generating stably transformed lines. As a proof of principle, we carried out transformations with fluorescent markers for the integral plasma membrane protein SYP121, a member of the SNARE family of vesicle‐trafficking proteins, and for DHAR1, a cytosolic protein that facilitates the scavenging of reactive oxygen species. We also carried out transformations with SYP121 and its interacting partner, the KC1 K+ channel, to demonstrate the utility of the methods in bimolecular fluorescence complementation (BiFC). Transient transformations of Arabidopsis using Agrobacterium co‐cultivation methods yielded expression in all epidermal cells, including root hairs and guard cells. Comparative studies showed that the PUBQ10 promoter gives similar levels of expression to that driven by the native SYP121 promoter, faithfully reproducing the characteristics of protein distributions at the subcellular level. Unlike the 35S‐driven construct, expression under the PUBQ10 promoter remained elevated for periods in excess of 2 weeks after transient transformation. This toolbox of vectors and fluorescent tags promises significant advantages for the study of membrane dynamics and cellular development, as well as events associated with environmental stimuli in guard cells and nutrient acquisition in roots.  相似文献   
995.
996.
Root contraction has been described for many species within the plant kingdom for over a century, and many suggestions have been made for mechanisms behind these contractions. To move the foliage buds deeper into the soil, the proximal part of the storage root of Trifolium pratense contracts by up to 30%. Anatomical studies have shown undeformed fibres next to strongly deformed tissues. Raman imaging revealed that these fibres are chemically and structurally very similar to poplar (Populus) tension wood fibres, which are known to generate high tensile stresses and bend leaning stems or branches upright. Analogously, an almost pure cellulosic layer is laid down in the lumen of certain root fibres, on a thin lignified secondary cell wall layer. To reveal its stress generation capacities, the thick cellulosic layer, reminiscent of a gelatinous layer (G‐layer) in tension wood, was selectively removed by enzymatic treatment. A substantial change in the dimensions of the isolated wood fibre bundles was observed. This high stress relaxation indicates the presence of high tensile stress for root contraction. These findings indicate a mechanism of root contraction in T. pratense (red clover) actuated via tension wood fibres, which follows the same principle known for poplar tension wood.  相似文献   
997.
998.
小麦根蛋白提取与双向电泳方法的优化与应用   总被引:2,自引:0,他引:2  
为了建立一套适合小麦根蛋白质组分析的双向电泳系统(2-DE),得到更加清晰的电泳图谱,本研究以小麦幼苗根系为材料,对根蛋白的提取方法、上样量等进行了优化。研究发现,上样量为1200μg时,Trizol抽提法提取的蛋白能够获得图像清晰、分辨率高、重复性好的双向电泳图谱,基本满足小麦根系蛋白质组学的分析和研究。  相似文献   
999.
梁群  王琪  张秀清  汪建 《生物信息学》2010,8(2):150-152,155
单碱基突变的筛选和分类是SNP分析的基础。为解决手工进行突变位点挖掘工作的困难,编写了VersusSNP软件。它可以解析并过滤序列比对结果,并根据突变类型将位点加以分类,以图形界面呈现给用户。使用VersusSNP,用户可以直观地了解基因组中单碱基突变的情况。其程序及源代码可以从http://sourceforge.net/projects/versussnp下载。  相似文献   
1000.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号