首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   11篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   15篇
  2019年   20篇
  2018年   21篇
  2017年   29篇
  2016年   17篇
  2015年   15篇
  2014年   33篇
  2013年   43篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
81.
To capture and swallow food on land, a sticky tongue supported by the hyoid and gill arch skeleton has evolved in land vertebrates from aquatic ancestors that used mouth-cavity-expanding actions of the hyoid to suck food into the mouth. However, the evolutionary pathway bridging this drastic shift in feeding mechanism and associated hyoid motions remains unknown. Modern fish that feed on land may help to unravel the physical constraints and biomechanical solutions that led to terrestrialization of fish-feeding systems. Here, we show that the mudskipper emerges onto land with its mouth cavity filled with water, which it uses as a protruding and retracting ‘hydrodynamic tongue’ during the initial capture and subsequent intra-oral transport of food. Our analyses link this hydrodynamic action of the intra-oral water to a sequence of compressive and expansive cranial motions that diverge from the general pattern known for suction feeding in fishes. However, the hyoid motion pattern showed a remarkable resemblance to newts during tongue prehension. Consequently, although alternative scenarios cannot be excluded, hydrodynamic tongue usage may be a transitional step onto which the evolution of adhesive mucosa and intrinsic lingual muscles can be added to gain further independence from water for terrestrial foraging.  相似文献   
82.
Scoliosis is a three-dimensional deformity characterized by coronal, sagittal and axial rotation of the spine. Surgical fusion of the spine is required in severe cases. Assessment of the surgical procedure requires enough accuracy and flexibility to allow planning of individual interventions or implant designs. Conventional 2-D radiography and even 3-D CT scanning have limitations for in-depth analysis of scoliosis that limit the ability to see the three-dimensional deformity and expose the patient to considerable doses of radiation, respectively. Our stereophotogrammetric analysis is able to provide accurate, intraoperative measurement of vertebral movement during surgical manuevres. Stereophoto pairs taken at each stage of the operation and robust statistical techniques can be used to determine rotation, translation, goodness of fit, and overall spinal contour before, during, and after the surgical instrumentation. A demonstration of data available from this system is included.  相似文献   
83.
This study was performed to evaluate a dynamic multibody model developed to characterize the influence of tibial tuberosity realignment procedures on patellofemoral motion and loading. Computational models were created to represent four knees previously tested at 40°, 60°, and 80° of flexion with the tibial tuberosity in a lateral, medial and anteromedial positions. The experimentally loaded muscles, major ligaments of the knee, and patellar tendon were represented. A repeated measures ANOVA with post-hoc testing was performed at each flexion angle to compare data between the three positions of the tibial tuberosity. Significant experimental trends for decreased patella flexion due to tuberosity anteriorization and a decrease in the lateral contact force due to tuberosity medialization were reproduced computationally. The dynamic multibody modeling technique will allow simulation of function for symptomatic knees to identify optimal surgical treatment methods based on parameters related to knee pathology and pre-operative kinematics.  相似文献   
84.
Abstract

Wearable inertial measurement units (IMUs) are a promising solution to human motion estimation. Using IMUs 3D orientations, a model-driven inverse kinematics methodology to estimate joint angles is presented. Estimated joint angles were validated against encoder-measured kinematics (robot) and against marker-based kinematics (passive mechanism). Results are promising, with RMS angular errors respectively lower than 3 and 6?deg over a minimum range of motion of 50?deg (robot) and 160?deg (passive mechanism). Moreover, a noise robustness analysis revealed that the model-driven approach reduces the effects of experimental noises, making the proposed technique particularly suitable for application in human motion analysis.  相似文献   
85.
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1–2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.  相似文献   
86.
Lameness in sows has an economic impact on pig production and is a major welfare concern. The aim of the present project was to develop methods to evaluate and quantify lameness in breeding sows. Five methods to study lameness were compared between themselves and with visual gait scoring used as a reference: footprint analysis, kinematics, accelerometers, lying-to-standing transition and foot lesion observation. Fifty sows of various parities and stages of gestation were selected using visual gait scoring and distributed into three groups: lame (L), mildly lame (ML) and non-lame (NL). They were then tested using each method. Kinematics showed that L sows had a lower walking speed than NL sows (L: 0.83 ± 0.04, NL: 0.96 ± 0.03 m/s; P < 0.05), a shorter stride length than ML sows (L: 93.0 ± 2.6, ML: 101.2 ± 1.5 cm; P < 0.05) and a longer stance time than ML and NL sows (L: 0.83 ± 0.03, ML: 0.70 ± 0.03, NL: 0.69 ± 0.02 s; P < 0.01). Accelerometer measurements revealed that L sows spent less time standing over a 24-h period (L: 6.3 ± 1.3, ML: 13.7 ± 2.4, NL: 14.5 ± 2.4%; P < 0.01), lay down earlier after feeding (L: 33.4 ± 4.6, ML: 41.7 ± 3.1, NL: 48.6 ± 2.9 min; P < 0.05) and tended to step more often during the hour following feeding (L: 10.1 ± 2.0, ML: 6.1 ± 0.5, NL: 5.4 ± 0.4 step/min standing; P = 0.06) than NL sows, with the ML sows having intermediate values. Visual observation of back posture showed that 64% of L sows had an arched back, compared with only 14% in NL sows (P = 0.02). Finally, footprint analysis and observation of lying-to-standing transition and foot lesions were not successful in detecting significant differences between L, ML and NL sows. In conclusion, several quantitative variables obtained from kinematics and accelerometers proved to be successful in identifying reliable indicators of lameness in sows. Further work is needed to relate these indicators with causes of lameness and to develop methods that can be implemented on the farm.  相似文献   
87.
Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders.  相似文献   
88.
Gaits can be defined based upon specific interlimb coordination patterns characteristic of a limited range of speeds, with one or more defining variables changing discontinuously at a transition. With changing speed, horses perform a repertoire of gaits (walk, trot, canter and gallop), with transitions between them. Knowledge of the series of kinematic events necessary to realize a gait is essential for understanding the proximate mechanisms as well as the control underlying gait transitions. We studied the kinematics of the actual transition from trot to canter in miniature horses. The kinematics were characterized at three different levels: the whole-body level, the spatio-temporal level of the foot falls and the level of basic limb kinematics. This concept represents a hierarchy: the horse's center of mass (COM) moves forward by means of the coordinated action of the limbs and changes in the latter are the result of alterations in the basic limb kinematics. Early and short placement of the fore limb was observed before the dissociation of the footfalls of one of the diagonal limb pairs when entering the canter. Dissociation coincided with increased amplitude and wavelength of the oscillations of the trunk in the sagittal plane. The increased amplitude cannot be explained solely by the passive effects of acceleration or by neck and head movements which are inconsistent with the timing of the transition. We propose that the transition is initiated by the fore limb followed by subsequent changes in the hind limbs in a series of kinematic events that take about 2.5 strides to complete.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号