首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2539篇
  免费   225篇
  国内免费   28篇
  2024年   2篇
  2023年   49篇
  2022年   26篇
  2021年   122篇
  2020年   155篇
  2019年   135篇
  2018年   79篇
  2017年   75篇
  2016年   73篇
  2015年   120篇
  2014年   155篇
  2013年   173篇
  2012年   129篇
  2011年   161篇
  2010年   124篇
  2009年   135篇
  2008年   149篇
  2007年   143篇
  2006年   118篇
  2005年   102篇
  2004年   90篇
  2003年   86篇
  2002年   76篇
  2001年   56篇
  2000年   38篇
  1999年   42篇
  1998年   35篇
  1997年   30篇
  1996年   23篇
  1995年   11篇
  1994年   26篇
  1993年   12篇
  1992年   9篇
  1991年   3篇
  1990年   8篇
  1989年   3篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有2792条查询结果,搜索用时 46 毫秒
991.
In most natural environments as well as in engineered environments, such as wastewater treatment plants, ammonia-oxidizing bacteria (AOB) experience fluctuating substrate concentrations. Several physiological traits, such as low maintenance energy demand and decay rate, cell-to-cell communication, cell mobility, stable enzymes and RNAs, could allow AOB to maintain themselves under unfavourable circumstances. This review examines whether AOB possess such traits and how these traits might offer advantages over competing organisms such as heterotrophic bacteria during periods of starvation. In addition, within the AOB groups, differences exist in adaptation to and competitiveness under conditions of high or low ammonia or oxygen concentrations. Because these findings are of importance with regard to the ecology and activity of AOB in natural and engineered environments, concluding remarks are directed towards future research objectives that may clarify unanswered questions, thereby contributing to the general knowledge of the ecology and activity of ammonia oxidizers.  相似文献   
992.
NMR spectroscopy combined with principal component analysis was applied to Arabidopsis thaliana treated with methyl jasmonate in order to obtain macroscopic metabolic changes caused by the treatment. As the first step several chromatographic and NMR spectroscopic techniques were utilized to identify metabolites of Arabidopsis. Sephadex LH-20 showed a high efficiency in the separation of phenolic metabolites in the plant. For identification of minor metabolites two-dimensional J-resolved NMR technique was directly applied to the plant extract and results in a number of elucidation of the metabolites of which signals overlap in 1H NMR spectra. The chemical structure of the identified metabolites were confirmed by various two-dimensional NMR spectroscopy including correlated spectroscopy, heteronuclear single quantum coherence, and heternuclear multiple bond correlation. As next step, a statistical approach, principal component analysis based on projected J-resolved NMR spectra was performed for metabolic alteration of methyl jasmonate-treated Arabidopsis. The results show that methyl jasmonate caused an increase of flavonoids, fumaric acid, sinapoyl malate, sinigrin, tryptophan, valine, threonine, and alanine and a decrease of malic acid, feruloyl malate, glutamine, and carbohydrates after 24 h treatment.  相似文献   
993.
Osteosarcoma (OS) is a sarcoma with high rates of pulmonary metastases and mortality. The mechanisms underlying tumour generation and development in OS are not well-understood. Haematopoietic cell kinase (HCK), a vital member of the Src family of kinase proteins, plays crucial roles in cancer progression and may act as an anticancer target; however, the mechanism by which HCK enhances OS development remains unexplored. Therefore, we investigated the role of HCK in OS development in vitro and in vivo. Downregulation of HCK attenuated OS cell proliferation, migration and invasion and increased OS cell apoptosis, whereas overexpression of HCK enhanced these processes. Mechanistically, HCK expression enhanced OS tumorigenesis via the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; HCK upregulation increased the phosphorylation of MEK and ERK and promoted epithelial-mesenchymal transition, with a reduction in E-cadherin in vitro. Furthermore, HCK downregulation decreased the tumour volume and weight in mice transplanted with OS cells. In conclusion, HCK plays a crucial role in OS tumorigenesis, progression and metastasis via the MEK/ERK pathway, suggesting that HCK is a potential target for developing treatments for OS.  相似文献   
994.
Methyl jasmonate (MeJA) was found to reduce spore germination, hyphal and mycelial growth in Alternaria alternata (Fr.) Keissl. The addition of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene precursor, together with MeJA to the culture medium resulted in a promotion of all developmental stages of the fungus; these compounds partially or completely reversed the inhibition due to MeJA depending on the concentrations applied. MeJA alone had no effect on ethylene production by mycelium, but after 6 days of incubation in the presence of ACC, emanation of this gas increased significantly. Ethylene is involved in reversing the inhibition of A. alternata due to MeJA.  相似文献   
995.
Calcium signalling in early embryos   总被引:1,自引:0,他引:1  
The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development.In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis.Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.  相似文献   
996.
997.
998.
Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. In human studies, ASP is increased in insulin resistant states such as obesity, diabetes, polycystic ovary syndrome and late pregnancy (the latter two associated with altered sex hormones). The aims were (i) to evaluate ASP response and C5L2 expression following treatment with sex steroid hormones and (ii) to identify mechanisms of ASP resistance using 3T3-L1 adipocytes and preadipocytes. Overnight incubation with physiological progesterone (PROG) concentrations induced dose-dependent inhibition of ASP-stimulated glucose transport in adipocytes (188 +/- 11% +ASP, 100 +/- 4% control, 129 +/- 18% to 85 +/- 7% [ASP + PROG 10(-8) to 10(-6) M] and preadipocytes (263 +/- 18% +ASP, 100 +/- 3% control, 170 +/- 11% to 167 +/- 4% [ASP + PROG 10(-8) to 10(-6) M]), while estradiol and testosterone (TEST) were effective only at the highest concentration (10(-6) M). In adipocytes, dose-dependent maximal C5L2 mRNA decreases were 39-75% (P = 0.003), with decreased cell-surface C5L2 of -22% and -27% (10(-6) M PROG and TEST, respectively) with no change in preadipocytes. Adipocytes treated with PROG displayed decreases in G proteins: Gbeta (-55%), Galphaq/11 (-56%) as well as complete inhibition of ASP stimulation. PROG significantly decreased basal levels of phosphorylated PKCalpha (p-PKCalpha) while there was no change in p- PKCzeta. ASP increased p-PKCalpha and PKCzeta to 161% (P < 0.0.001) and 160% (P < 0.01), a stimulation effectively blocked by PROG (10(-8) and 10(-6) M) and TEST (10(-6) M). Sex steroid hormone-induced ASP resistance via C5L2 may contribute to altered adipose tissue function and insulin resistance phenotype in humans.  相似文献   
999.
In this article we show that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of the class IA phosphatidylinositol 3-kinase PI3Kalpha and its downstream target Akt in HL60, U937 and THP-1 myeloid leukaemic cell lines. Furthermore, we show that the classical nuclear vitamin D receptor (VDR(nuc)) is involved in this activation of the PI3K/Akt signalling in these cell lines. We have previously shown that the activity of steroid sulphatase is stimulated in HL60, U937 and THP-1 myeloid leukaemic cell lines by 1alpha,25(OH)(2)D(3) (Hughes et al., [2001] Biochem J 355:361-371; Hughes et al., [2005] J Cell Biochem 94:1175-1189; Hughes and Brown [2006] J Cell Biochem 98:590-617). In this article we show that the 1alpha,25(OH)(2)D(3)-stimulated increase in signalling via the PI3K/Akt pathway plays a role in the increase in steroid sulphatase activity in the HL60 U937 and THP-1 cell lines. We used a variety of pharmacological and biochemical approaches to show that activation of PI3Kalpha mediates the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells. We also show that the PI3K/Akt dependent activation of NF-kappaB plays a role in the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells.  相似文献   
1000.
Notch signalling plays an important role in hematopoiesis and in the pathogenesis of T-ALL. Notch is known to interact with Ras and PTEN/PI3K (phosphoinositide-3 kinase)/Akt pathways. We investigated the interaction of Notch with these pathways and the possible reciprocal regulation of these signalling systems in T-ALL cells in vitro. Our analyses indicate that the PI3K/Akt pathway is constitutively active in the four T-ALL cell lines tested. Akt phosphorylation was not altered by the sequestration of growth factors, that is, Akt activation seems to be less dependent on but not completely independent of growth factors, possibly being not subject to negative feedback regulation. PTEN expression was not detected in 3/4 cell lines tested, suggesting the loss of PTEN-mediated Akt activation. Inhibition of the PI3K/Akt pathway arrests growth and enhances apoptosis, but with no modulation of expression of Bax-alpha and Bcl-2 proteins. We analysed the relationship between Notch-1 and the PI3K/Akt signalling and show that inhibition of the Akt pathway changes Notch expression; Notch-1 protein decreased in all the cell lines upon treatment with the inhibitor. Our studies strongly suggest that Notch signalling interacts with PI3K/Akt signalling and further that this occurs in the absence of PTEN expression. The consequences of this to the signalling outcome are yet unclear, but we have uncovered a significant inverse relationship between Notch and PI3K/Akt pathway, which leads us to postulate the operation of a reciprocal regulatory loop between Notch and Ras-PI3K/Akt in the pathogenesis of T-ALL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号