首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63522篇
  免费   5194篇
  国内免费   7636篇
  2023年   1151篇
  2022年   1334篇
  2021年   2014篇
  2020年   1991篇
  2019年   2660篇
  2018年   2247篇
  2017年   2098篇
  2016年   2063篇
  2015年   2138篇
  2014年   2989篇
  2013年   4220篇
  2012年   2601篇
  2011年   3029篇
  2010年   2561篇
  2009年   3345篇
  2008年   3304篇
  2007年   3452篇
  2006年   3174篇
  2005年   3036篇
  2004年   2684篇
  2003年   2380篇
  2002年   2151篇
  2001年   1527篇
  2000年   1395篇
  1999年   1340篇
  1998年   1314篇
  1997年   1099篇
  1996年   958篇
  1995年   975篇
  1994年   882篇
  1993年   781篇
  1992年   711篇
  1991年   666篇
  1990年   570篇
  1989年   517篇
  1988年   497篇
  1987年   424篇
  1986年   427篇
  1985年   680篇
  1984年   773篇
  1983年   453篇
  1982年   610篇
  1981年   532篇
  1980年   512篇
  1979年   375篇
  1978年   275篇
  1977年   279篇
  1976年   255篇
  1975年   190篇
  1973年   215篇
排序方式: 共有10000条查询结果,搜索用时 902 毫秒
21.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   
22.
We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid–ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.  相似文献   
23.
Data on the interaction of DNA type I topoisomerases from the murine and human placenta cells with specific and nonspecific oligonucleotides of various structures and lengths are summarized. The relative contributions of various contacts between the enzymes and DNA that have previously been detected by X-ray analysis to the total affinity of the topoisomerases for DNA substrates are estimated. Factors that determine the differences in the enzyme interactions with specific and nonspecific single- and double-stranded DNAs are revealed. The results of the X-ray analysis of human DNA topoisomerase I are interpreted taking into account data on the comprehensive thermodynamic and kinetic analysis of the enzyme interaction with the specific and nonspecific DNAs.  相似文献   
24.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
25.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
26.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
27.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
28.
The l-thyroxine binding site in human serum thyroxine-binding globulin was investigated by affinity labeling with N-bromoacetyl-l-thyroxine (BrAcT4). Competitive binding studies showed that, in the presence of 100 molar excess of BrAcT4, binding of thyroxine to thyroxine-binding globulin was nearly totally abolished. The reaction of BrAcT4 to form covalent binding was inhibited in the presence of thyroxine and the affinity-labeled thyroxinebinding globulin lost its ability to bind thyroxine. These results indicate BrAcT4 and thyroxine competed for the same binding site. Affinity labeling with 2 mol of BrAcT4/mol of thyroxine-binding globulin resulted in the covalent attachment of 0.7 mol of ligand. By amino acid analysis and high voltage paper electrophoresis, methionine was identified as the major residue labeled (75%). Lysine, tyrosine, and histidine were also found to be labeled to the extent of 8, 8, and 5%, respectively.  相似文献   
29.
30.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号