首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   35篇
  国内免费   5篇
  2023年   3篇
  2022年   1篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   13篇
  2015年   17篇
  2014年   12篇
  2013年   20篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   17篇
  2008年   22篇
  2007年   18篇
  2006年   21篇
  2005年   11篇
  2004年   15篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
排序方式: 共有343条查询结果,搜索用时 639 毫秒
91.
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.  相似文献   
92.
The perception of skylight polarization in the ultraviolet (UV) by many insect species for orientation purposes is rather surprising, because both the degree of linear polarization and the radiance of light from the clear sky are considerably lower in the UV than in the blue or green. In this work we call this the "UV-sky-pol paradox". Although in the past, several attempts have been made to resolve this paradox, none of them was convincing. We present here a possible quantitative resolution to the paradox. We show by a model calculation that if the air layer between a cloud and a ground-based observer is partly sunlit, the degree of linear polarization p of skylight originating from the cloudy region is highest in the UV, because in this spectral range the unpolarized UV-deficient cloudlight dilutes least the polarized light scattered in the air beneath the cloud. Similarly, if the air under foliage is partly sunlit, p of downwelling light from the canopied region is maximal in the UV, because in this part of spectrum the unpolarized UV-deficient green canopylight dilutes least the polarized light scattered in the air beneath the canopy. Therefore, the detection of polarization of downwelling light under clouds or canopies is most advantageous in the UV, in which spectral range the risk is the smallest that the degree of polarization p is lower than the threshold p(tr) of polarization sensitivity in animals. On the other hand, under clear skies there is no favoured wavelength for perception of celestial polarization, because p of skylight is high enough (p > p(tr)) at all wavelengths. We show that there is an analogy between the detection of UV skylight polarization and the polarotactic water detection in the UV. However, insects perceive skylight polarization by UV or blue or green receptors. The question, why they differ in the spectral channel used for the detection of celestial polarization cannot be answered at the present time, because data are insufficient. Nevertheless, we present here one possible atmospheric optical reason why certain visual systems involved in detecting celestial polarization, are specifically tuned to the UV part of the spectrum.  相似文献   
93.
Recent multi-habitat studies across a range of spatial scales have shown that species-rich habitats are often highly invasible by exotic species. The primary measures of invasion in these and other studies are invader richness and the absolute cover or biomass of invaders. We argue that the relative biomass or cover of invaders (dominance) is an important but overlooked measure of plant invasion. We re-analyzed data presented in five previous studies to evaluate whether exotic relative abundance is positively correlated with native richness. There were either no relationships or negative relationships between native richness and relative exotic cover calculated from three spatial scales (1, 1000 and 4000 m2). Thus while the original studies reported high exotic richness or absolute cover in habitats rich in native species, native richness did not predict the degree to which exotics had become dominant or abundant relative to natives. Absolute measures of exotic cover reported in the original studies underestimated relative exotic cover in habitats with low native species richness. High exotic dominance in areas of low native richness may indicate that exotic richness and dominance are controlled by different factors. We conclude that it is useful for researchers to measure both invader richness and invader dominance when trying to understand the environmental factors that are associated with plant invasions.  相似文献   
94.
Species that exist in heterogeneous environments experience selection for specialization that is opposed by the homogenizing forces of migration and recombination. Migration tends to reduce associations between alleles and habitats, whereas recombination tends to break down associations among loci. The idea that heterogeneity should favor the evolution of isolating mechanisms has motivated evolutionary studies of reduced migration, habitat preference, and assortative mating. However, costly female choice of high-quality males can also evolve in heterogeneous populations and is not hindered by either recombination or migration. When information on male fitness is available through indicator traits, female choice based on these traits increases associations between female choice alleles and locally adapted alleles. Not only does female choice evolve in a heterogeneous environment, it acts to enhance the level of genetic variation and is thus self-reinforcing. The amount of female choice at equilibrium depends on how well mixed the habitats are, how much information on male genotype is available, and how different the habitats are. Female choice reaches the highest levels for intermediate levels of heterogeneity, because at such levels of heterogeneity there is both a high risk and high cost of mismating.  相似文献   
95.
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE‐based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty‐five transposon‐inserted genes were sequenced and homology‐based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE‐associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.  相似文献   
96.
A general method for combining information from similar experiments is illustrated in the case where two independent experiments are designed to estimate a dose-response curve. By accounting for variability across experiments, the proposed method avoids inferential pitfalls such as extended forms of Simpson's paradox. The validity of the method is supported by seven fundamental assumptions about data from replicated experiments. In contrast, an example indicates that failing to reject a preliminary test of equal distributions is inadequate justification for pooling data from two experiments. Methods that account for the variability across experiments in terms of known covariates are also discussed.  相似文献   
97.
Large animals should have higher lifetime probabilities of cancer than small animals because each cell division carries an attendant risk of mutating towards a tumour lineage. However, this is not observed—a (Peto''s) paradox that suggests large and/or long-lived species have evolved effective cancer suppression mechanisms. Using the Euler–Lotka population model, we demonstrate the evolutionary value of cancer suppression as determined by the ‘cost’ (decreased fecundity) of suppression verses the ‘cost’ of cancer (reduced survivorship). Body size per se will not select for sufficient cancer suppression to explain the paradox. Rather, cancer suppression should be most extreme when the probability of non-cancer death decreases with age (e.g. alligators), maturation is delayed, fecundity rates are low and fecundity increases with age. Thus, the value of cancer suppression is predicted to be lowest in the vole (short lifespan, high fecundity) and highest in the naked mole rat (long lived with late female sexual maturity). The life history of pre-industrial humans likely selected for quite low levels of cancer suppression. In modern humans that live much longer, this level results in unusually high lifetime cancer risks. The model predicts a lifetime risk of 49% compared with the current empirical value of 43%.  相似文献   
98.
99.
Nutrient cycling is fundamental to ecosystem functioning. Despite recent major advances in the understanding of complex food web dynamics, food web models have so far generally ignored nutrient cycling. However, nutrient cycling is expected to strongly impact food web stability and functioning. To make up for this gap, we built an allometric and size structured food web model including nutrient cycling. By releasing mineral nutrients, recycling increases the availability of limiting resources for primary producers and links each trophic level to the bottom of food webs. We found that nutrient cycling can provide a significant part of the total nutrient supply of the food web, leading to a strong enrichment effect that promotes species persistence in nutrient poor ecosystems but leads to a paradox of enrichment at high nutrient inputs. The presence of recycling loops linking each trophic level to the basal resources weakly affects species biomass temporal variability in the food web. Recycling loops tend to slightly dampen the destabilising effect of nutrient enrichment on consumer temporal variability while they have opposite effects for primary producers. By considering nutrient cycling, this new model improves our understanding of the response of food webs to nutrient availability and opens perspectives to better link studies on food web dynamics and ecosystem functioning.  相似文献   
100.
Abstract

A hierarchic scheme of protein folding does not solve the Levinthal paradox since it cannot provide a simultaneous explanation for major features observed for protein folding: (i) folding within non-astronomical time, (ii) independence of the native structure on large variations in the folding rates of given protein under different conditions, and (iii) co-existence, in a visible quantity, of only the native and the unfolded molecules during folding of moderate size (single-domain) proteins. On the contrary, a nucleation mechanism can account for all these major features simultaneously and resolves the Levinthal paradox.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号