首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3794篇
  免费   348篇
  国内免费   216篇
  2024年   8篇
  2023年   118篇
  2022年   153篇
  2021年   203篇
  2020年   174篇
  2019年   229篇
  2018年   188篇
  2017年   135篇
  2016年   111篇
  2015年   140篇
  2014年   192篇
  2013年   248篇
  2012年   143篇
  2011年   145篇
  2010年   111篇
  2009年   150篇
  2008年   136篇
  2007年   149篇
  2006年   117篇
  2005年   110篇
  2004年   103篇
  2003年   93篇
  2002年   100篇
  2001年   64篇
  2000年   63篇
  1999年   45篇
  1998年   72篇
  1997年   42篇
  1996年   47篇
  1995年   50篇
  1994年   65篇
  1993年   45篇
  1992年   59篇
  1991年   35篇
  1990年   50篇
  1989年   45篇
  1988年   47篇
  1987年   35篇
  1986年   36篇
  1985年   63篇
  1984年   69篇
  1983年   32篇
  1982年   38篇
  1981年   30篇
  1980年   22篇
  1979年   18篇
  1978年   5篇
  1976年   7篇
  1975年   4篇
  1973年   5篇
排序方式: 共有4358条查询结果,搜索用时 15 毫秒
71.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   
72.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   
73.
Immunohistochemical double labelling of the enteric nervous system of the guinea pig ileum was performed with a monoclonal antibody (anti-MYC 033) directed against a peptide sequence of the human c-Myc protein together with antibodies directed against either the neuron-specific antigens neuron-specific enolase or PGP 9.5 or the glia-specific marker S-100 to demonstrate that anti-MYC 033 labelled the nuclei of all enteric neurons but not glia. This strategy was also employed to demonstrate that another anti-c-Myc monoclonal anti-body, anti-MYC 070, labelled the nuclei of all neurons and glia, as well as perhaps all other cells in these preparations. A polyclonal antiserum raised against a peptide sequence of the human c-Fos protein (anti-FOS 4) was shown to label the identical nuclei as anti-MYC 033. The ganglionic density of nuclei labelled by anti-FOS 4 was found to be similar to previous measures of the ganglionic density of neurons. Double labelling with anti-MYC 033 and an antiserum directed against vasoactive intestinal polypeptide was performed to reexamine the ganglionic density of neurons that express this neuropeptide. Our results suggest that the ganglionic density of these neurons might be less than previously determined.  相似文献   
74.
The branchial and intestinal influx of caesium (Cs) in the rainbow trout ( Oncorhynchus mykiss ) were measured using a perfused whole-body preparation. The branchial influx of Cs was small, 0–31 μmoles kg−1 h−1 at an external concentration of 1 mm. Branchial Cs influx was saturable, with a Km of 1–92 mm and a Jmax of l.05μmoles kg−1 h−1. Intestinal Cs influx was not saturable, but was directly proportional to the mucosal Cs concentration. Intestinal Cs influx was approximately 10–40 times greater than branchial Cs influx over a wide range of external Cs concentrations. These results are discussed with respect to mechanisms of Cs uptake and to the relative accumulation of radiocaesium from water and food in the environment.  相似文献   
75.
76.
Abstract: In this study we analyzed the involvement of the cyclic AMP (cAMP)-protein kinase A system in the regulation of interleukin 6 production by cultured cortical astrocytes. Vasoactive intestinal peptide strongly increased, in a dose-dependent manner, interleukin 6 production. This effect was reduced when protein kinase A was blocked by KT-5720; it was not affected by calphostin C, a protein kinase C inhibitor. Forskolin caused a concentration-dependent increase in interleukin 6 release that was also inhibited by KT-5720. Because prostaglandins are believed to play a role in interleukin 6 production, we tried to determine whether the stimulatory effects of vasoactive intestinal peptide and forskolin on cytokine release might be mediated by stimulation of prostaglandin production in cortical astrocytes. Vasoactive intestinal peptide did not increase the production of either prostaglandin E2 or F. Conversely, forskolin concentration-dependently stimulated the production of both prostaglandins, an effect that was blocked by indomethacin. Indomethacin did not affect either vasoactive intestinal peptide- or forskolin-stimulated interleukin 6 production. To exclude the possibility that prostaglandins participate in interleukin 6 production induced by forskolin, we tested prostaglandins E2 and F. The former was completely ineffective in eliciting the cytokine production, whereas prostaglandin F slightly increased interleukin 6 production only at the highest concentrations. 8-Bromo-cAMP and dibutyryl-cAMP stimulated interleukin 6 production to a lesser extent than vasoactive intestinal peptide and forskolin. In conclusion, we provide evidence that vasoactive intestinal peptide increases interleukin 6 production by astrocytes through the stimulation of the cAMP-protein kinase A pathway, an effect that is reproduced by cAMP analogues. In addition, we point out that prostaglandins are not involved in vasoactive intestinal peptide- and forskolin-mediated induction of interleukin 6 production in cultured astrocytes.  相似文献   
77.
78.
Abstract: The brain, with the exception of the choroid plexuses and Circumventricular organs, is partially protected from the invasion of blood-borne chemicals by the specific morphological properties of the cerebral micro-vessels, namely, the tight junctions of the blood-brain barrier. Recently, several enzymes that are primarily involved in hepatic drug metabolism have been shown to exist in the brain, albeit at relatively low specific activities. In the present study, the hypothesis that these enzymes are located primarily at blood-brain interfaces, where they form an "enzymatic barrier," is tested. By using microdissection techniques or a gradient-centrifugation isolation procedure, the activities of seven drug-metabolizing enzymes in isolated microvessels, choroid plexuses, meningeal membranes, and tissue from three Circumventricular organs (the neural lobe of the hypophysis, pineal gland, and median eminence) were assayed. With two exceptions, the activities of these enzymes were higher in the three Circumventricular organs and cerebral microvessel than in the cortex. Very high membrane-bound epoxide hydrolase and UDP-glucuronosyltransferase activities (approaching those in liver) and somewhat high 7-benzoxyre-sorufin- O -dealkylase and NADPH-cytochrome P-450 reductase activities were determined in the choroid plexuses. The pia-arachnoid membranes, but not the dura matter, displayed drug-metabolizing enzyme activities, notably that of epoxide hydrolase: The drug-metabolizing enzymes located at these nonparenchymal sites may function to protect brain tissue from harmful compounds.  相似文献   
79.
Abstract: We identified and characterized 125I-endothelin-1 (125I-ET-1) binding sites in tumor capillaries isolated from human glioblastomas, using the quantitative receptor autoradiographic technique with pellet sections. Quantification was done using the computerized radioluminographic imaging plate system. High-affinity ET receptors were localized in capillaries from glioblastomas and the surrounding brain tissues (KD = 4.7 ± 1.0 × 10?10 and 1.6 ± 0.3 × 10?10M, respectively; Bmax = 161 ± 38 and 140 ± 37 fmol/mg, respectively; mean ± SEM, n = 5). BQ-123, a selective antagonist for the ETA receptor, potently competed for 125I-ET-1 binding to sections of the microvessels with IC50 values of 5.1 ± 0.3 and 5.1 ± 1.5 nM, and 10?6M BQ-123 displaced 84 and 58% of ET binding to capillaries from tumors and brains, respectively. In addition, competition curves obtained in the presence of increasing concentrations of ET-3 showed two components (IC50 = 5.7 ± 2.5 × 10?10 and 1.4 ± 0.2 × 10?6M for tumor microvessels, 1.8 ± 0.6 × 10?10 and 1.1 ± 0.3 × 10?6M for brain microvessels, respectively). Our results indicate that (a) the method we used is simple and highly sensitive for detecting and characterizing various receptors in tumor capillaries, especially in the case of a sparse specimen, and (b) capillaries in glioblastomas express specific high-affinity ET binding sites, candidates for biologically active ET receptors, which predominantly belong to the ETA subtype.  相似文献   
80.
Abstract: This article evaluates the influence of an opening of the blood-brain barrier (BBB) on compounds in brain extracellular fluid. The concentrations of amino acids and some other primary amines were determined in dialysates sampled from the right parietal cortex of rats before and after an intracarotid infusion of protamine sulfate. Extravasated plasma proteins were visualized by Evans blue/albumin and immunohistochemistry. CSF albumin— an indicator of blood-CSF barrier opening—was quantified with immunoelectrophoresis. The brains were macroscopically edematous after 10 mg but not after 5 mg of protamine sulfate. The higher dose led to a 50% death rate. The concentrations of amino acids did not change 10 min after the BBB opening. No significant alterations in the amino acid concentrations were observed after the lower dose. The concentrations of glutamate, aspartate, GABA, glycine, taurine, and phosphoethanolamine increased significantly within 50–80 min after the infusion of 10 mg of protamine sulfate. CSF albumin levels were significantly increased 1 h after infusion. We conclude that a dysfunction of the BBB, of a degree known to induce brain edema (10 mg of protamine sulfate), significantly increases the extracellular concentration of excitatory amino acids, GABA, taurine, and phosphoethanolamine in the extracellular space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号