首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1066篇
  免费   42篇
  国内免费   19篇
  2023年   10篇
  2022年   6篇
  2021年   13篇
  2020年   22篇
  2019年   38篇
  2018年   26篇
  2017年   25篇
  2016年   20篇
  2015年   20篇
  2014年   25篇
  2013年   54篇
  2012年   20篇
  2011年   28篇
  2010年   27篇
  2009年   29篇
  2008年   34篇
  2007年   38篇
  2006年   30篇
  2005年   37篇
  2004年   47篇
  2003年   22篇
  2002年   21篇
  2001年   41篇
  2000年   36篇
  1999年   28篇
  1998年   22篇
  1997年   26篇
  1996年   44篇
  1995年   26篇
  1994年   26篇
  1993年   26篇
  1992年   26篇
  1991年   22篇
  1990年   30篇
  1989年   22篇
  1988年   20篇
  1987年   37篇
  1986年   23篇
  1985年   11篇
  1984年   17篇
  1983年   6篇
  1982年   11篇
  1981年   12篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1971年   3篇
排序方式: 共有1127条查询结果,搜索用时 15 毫秒
121.
Growth, CO2 exchange, and the ultrastructure of chloroplasts were investigated in the leaves of potato plants (Solanum tuberosum L., cv. Désirée) of wild type and transformed with a gene for yeast invertase under the control of patatin class I B33 promoter (for apoplastic enzyme) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. At a temperature of 22°C optimal for growth, the transformed plants differed from the plants of wild type in retarded growth and a lower rate of photosynthesis as calculated per plant. On a leaf dry weight basis, photosynthesis of transformed plants was higher than in control plants. Under hypothermia (5°C), dark respiration and especially photosynthesis of transformed plants turned out to be more intense than in control material. After a prolonged exposure to low temperature (6 days at 5°C), in the plants of both genotypes, the ultrastructure of chloroplasts changed. Absolute areas of sections of chloroplasts and starch grains rose, and the area of plastoglobules decreased; in transformed plants, these changes were more pronounced. By some ultrastructural characteristics: a reduction in the cold of relative total area of sections of starch grains and plastoglobules (in percents of the chloroplast section area) and in the number of granal thylakoids (per a chloroplast section area), transformed plants turned out to be more cold resistant than wild-type plants. The obtained results are discussed in connection with changes in source-sink relations in transformed potato plants. These changes modify the balance between photosynthesis and retarded efflux of assimilates, causing an increase in the intracellular level of sugars and a rise in the tolerance to chilling.  相似文献   
122.
The present study examines the seasonal and diurnal patterns of water management by plant species inhabiting the wall fissures of the ancient castle of Patras. Their water status (water potential), stomatal behaviour (leaf resistance and transpiration rate) as well as tissue water relations (turgor loss point, osmoregulation capability and cell wall elasticity) were recorded in relation to season, daytime and respective environmental conditions. Despite some minor deviations, all five species exhibited a water spending strategy with high diurnal transpiration rates through seasons, limited only by the generally low light intensities prevailing at the northwest-facing vertical walls. Progressive shortage of water during summer resulted in the reduction of transpiration in four species. Diurnal water losses caused a reduction of water potential until midday or dusk, which further decreased with the progress of the dry period. However, predawn water potential remained high through all seasons. The above finding, together with the high transpiration, was unexpected for species growing in a very hostile environment as far as water supply is regarded. It could be partly explained by the recently found ability of all five species to absorb dew from leaf surfaces. However, such plants should also possess mechanisms to take up water efficiently from a rather dry substrate. Indeed, pressure–volume analysis revealed substantial seasonal changes in osmoregulatory capacity and minor changes in cell wall elasticity of leaf tissue. Both changes facilitate (the mechanism differs) water uptake from the wall-fissure substrate during the dry period. Although the relative contribution of the two mechanisms was different, they both allowed plants to maintain turgor and thus growth throughout their growing season.  相似文献   
123.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   
124.
Several countries have imposed bans on the wearing of face veils, a controversial option considered in Bill 94 by the province of Quebec in 2010. This paper examines non-Muslim women's support for the acceptability of the niqab in public spaces. Analysing the 2010 Quebec Women's Political Participation Survey, we find that key feminist arguments – that wearing the niqab is a woman's free choice, a matter of freedom of religion and a visible symbol of women's oppression – are important drivers of opinion. Their role in shaping opinion, however, is complex and mirrors divisions among feminist groups in the province. Additional attitudinal drivers include generation, exposure to the practice and openness to immigration. Equally important, our findings suggest that being a member of a racial minority, feelings of cultural insecurity and religiosity are of little consequence for thinking on the issue.  相似文献   
125.
Behavioral ecologists have recently begun using multilevel modeling for the analysis of social behavior. We present a multilevel modeling formulation of the Social Relations Model that is well suited for the analysis of dyadic network data. This model, which we adapt for count data and small datasets, can be fitted using standard multilevel modeling software packages. We illustrate this model with an analysis of meal sharing among Ye'kwana horticulturalists in Venezuela. In this setting, meal sharing among households is predicted by an association index, which reflects the amount of time that members of the households are interacting. This result replicates recent findings that interhousehold food sharing is especially prevalent among households that interact and cooperate in multiple ways. We discuss opportunities for human behavioral ecologists to expand their focus to the multiple currencies and cooperative behaviors that characterize interpersonal relationships in preindustrial societies. We discuss possible extensions to this statistical modeling approach and applications to research by human behavioral ecologists and primatologists. Am J Phys Anthropol 157:507–512, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
126.
Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO(2) concentration ([CO(2)]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO(2)], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO(2)]. Transfer of (13)C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D(2)O) transfer increased with MN potential under ambient [CO(2)]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO(2)] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change.  相似文献   
127.
The physiological responses to hypoxic stress were studied in the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Growth, leaf gas exchange, water (and ion) relations and osmotic adjustment were determined in hydroponically grown plants exposed to 10, 20 and 30 days of oxygen deficiency. The highest growth of reed seedlings was found in normoxic (aerobic) conditions. Treatment effects on biomass production were relatively consistent within each harvest. Leaf water potential and osmotic potential declined significantly as hypoxia periods increased. However, leaf turgor pressure showed a consistent pattern of increase, suggesting that reed plants adjusted their water status by osmotic adjustment in response to root hypoxia. After 20 and 30 days in the low oxygen treatment, net CO2 assimilation and stomatal conductance were positively associated and the former variable also had a strong positive relationship with transpiration. Short-term hypoxic stress had a slight effect on the ionic status (K+, Ca2+ and Mg2+) of reed plants. In contrast, soluble sugar concentrations increased more under hypoxic conditions as compared to normoxia. These findings indicate that hypoxia slightly affected the physiological behavior of reed plants.  相似文献   
128.
A method for direct estimation of percentage apoplastic water volume (% APO) in conifer needles is described. The method presented here, and designated the pressure-needle (P-N) method, measures the relative water content of the needles to develop a curve similar to the pressure-volume (P-V) curve. P-V and P-N curves were developed for Picea pungens Engelm. cv. Hoopsi, Pinus sylvestris L., Abies gradis (Dougl.) L., and Pseudotsuga menziesii (Mirb) Franco. The % APO estimated by the two procedures varied as much as 2-fold, while other parameters were similar. The P-V method generated consistently higher and more variable % APO than the P-N method, due to the inclusion of the apoplastic water of the stem in the P-V method. For conifers, the P-N method offers a more accurate and precise method for determining % APO.  相似文献   
129.
A 2-yr phytotron study was conducted to investigate the intra- and inter-specific competitive behaviour of juvenile beech (Fagus sylvatica) and spruce (Picea abies). Competitiveness was analysed by quantifying the resource budgets that occur along structures and within occupied space of relevance for competitive interaction. Ambient and elevated CO(2) and ozone (O(3)) regimes were applied throughout two growing seasons as stressors for provoking changes in resource budgets, growth and allocation to facilitate the competition analysis. The hypothesis tested was that the ability to sequester space at low structural cost will determine the competitive success. Spruce was a stronger competitor than beech, as displayed by its higher above-ground biomass increments in mixed culture compared with monoculture. A crucial factor in the competitive success of spruce was its ability to enlarge crown volume at low structural costs, supporting the hypothesis. Interspecific competition with spruce resulted in a size-independent readjustment of above-ground allocation in beech (reduced leaf : shoot biomass ratio). The efficient use of resources for above-ground space sequestration proved to be a parameter that quantitatively reflects competitiveness.  相似文献   
130.
A field experiment on olive trees (Olea europaea L.) was designed with the objective to search for an optimum irrigation scheduling by analyzing the possible effects of deficit irrigation. Treatments were: a non-irrigated control (rainfed) and three treatments that received seasonal water amount equivalent to 33 and 66% of crop evapotranspiration (ETC) in the period August–September (respectively 33II and 66II), and 66% of (ETC) from late May to early October (66I-II). Atmospheric evaporative demand and soil moisture conditions were regularly monitored. Irrigation effects on plant water relations were characterized throughout a growing season. Whole-plant water use, in deficit irrigated (66I-II) and rainfed olive trees, was determined using a xylem sap flow method (compensation heat-pulse technique). The magnitude of variations in water use and the seasonal dynamic of water relations varied among treatments, suggesting that olive trees were strongly responsive to both irrigation amount and time. Physiological parameters responded to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. All measurements of tree water status were highly correlated with one another. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the water balance technique. Deficit irrigation during the whole summer (66I-II) resulted in improved plant water relations with respect to other watering regimes; while, severe regulated deficit irrigation differentiated only slightly 33II treatment from rainfed plants. Nevertheless, regulated deficit irrigation of olive trees after pit hardening (66II) could be recommended, at least in soil, cultivar and environmental conditions of this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号